Zahid Ayesha, Ismail Hazrat, Wilson Jennifer C, Grice I Darren
Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia.
Vaccines (Basel). 2025 Jul 20;13(7):767. doi: 10.3390/vaccines13070767.
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic immunogenicity, adjuvant properties, and scalability establish OMVs as potent tools for combating infectious diseases and cancer. Recent advancements in genetic engineering and biotechnology have further expanded the utility of OMVs, enabling the incorporation of multiple epitopes and antigens from diverse pathogens. These developments address critical challenges such as antigenic variability and co-infections, offering broader immune coverage and cost-effective solutions. This review explores the unique structural and immunological properties of OMVs, emphasizing their capacity to elicit robust immune responses. It critically examines established and emerging engineering strategies, including the genetic engineering of surface-displayed antigens, surface conjugation, glycoengineering, nanoparticle-based OMV engineering, hybrid OMVs, and in situ OMV production, among others. Furthermore, recent advancements in preclinical research on OMV-based vaccines, including synthetic OMVs, OMV-based nanorobots, and nanodiscs, as well as emerging isolation and purification methods, are discussed. Lastly, future directions are proposed, highlighting the potential integration of synthetic biology techniques to accelerate research on OMV engineering.
外膜囊泡(OMV)由革兰氏阴性菌自然分泌,已成为开发下一代疫苗的通用平台。OMV是细菌发病机制、水平基因转移、细胞通讯、维持细菌适应性和群体感应的重要贡献者。其固有的免疫原性、佐剂特性和可扩展性使OMV成为对抗传染病和癌症的有力工具。基因工程和生物技术的最新进展进一步扩展了OMV的用途,能够整合来自不同病原体的多种表位和抗原。这些进展应对了诸如抗原变异性和合并感染等关键挑战,提供了更广泛的免疫覆盖范围和具有成本效益的解决方案。本综述探讨了OMV独特的结构和免疫学特性,强调了它们引发强大免疫反应的能力。它批判性地研究了既定的和新兴的工程策略,包括表面展示抗原的基因工程、表面偶联技术、糖工程、基于纳米颗粒的OMV工程、杂合OMV以及原位OMV生产等。此外,还讨论了基于OMV的疫苗临床前研究的最新进展,包括合成OMV、基于OMV的纳米机器人和纳米盘,以及新兴的分离和纯化方法。最后,提出了未来的方向,强调了合成生物学技术的潜在整合,以加速对OMV工程的研究。