Ma Limin, Wang Ying, Chen Yaoyao, Xu Dongming, Han Rui, Jiao Dongxu, Xing Huanhuan, Wang Dewen, Yang Xiurong
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
ACS Nano. 2025 Aug 12;19(31):28410-28421. doi: 10.1021/acsnano.5c06779. Epub 2025 Jul 29.
Efficiently enhancing the activity and selectivity of targeted nanozymes is a challenging task, primarily due to the inherent structural stability and heterogeneous atomic composition of traditional nanozymes. Herein, theoretical design is carried out to select Fe-based oxides (FO) nanozymes with high peroxidase (POD)-like activity by incorporating different nonmetallic atoms (N, P, S, and B). Among these dopants, B emerged as a superior candidate because it could effectively tune the adsorption energies of *OH intermediates and *HO, thereby endowing the nanozymes with superior POD-like performance. Leveraging this insight, Bdoped Fe-based oxides (FOB) is successfully synthesized, demonstrating remarkable POD-like activity and ultrafast reaction kinetics. Mechanistic investigations revealed that B doping enhances electron transfer and intermediate adsorption by increasing the electron density and reducing the coordination number of the Fe center, concomitantly lowering the energy barrier for hydroxyl radical (·OH) formation and the rate-determining step. As a proof of concept, a three-enzyme cascade colorimetric biosensor integrating acetylcholinesterase (AChE)-choline oxidase (ChOx)-POD is constructed to perform ultrasensitive and selective detection of AChE activity and inhibitors. This study establishes a novel framework for designing high enzyme-mimicking performance transition-metal oxide nanozymes with doping nonmetallic atoms, provoking an inspiration for the rational design of nanozymes by regulating the electronic and coordination environment.
有效提高靶向纳米酶的活性和选择性是一项具有挑战性的任务,主要是由于传统纳米酶固有的结构稳定性和异质原子组成。在此,通过掺入不同的非金属原子(N、P、S和B)进行理论设计,以选择具有高过氧化物酶(POD)样活性的铁基氧化物(FO)纳米酶。在这些掺杂剂中,B成为了一个优异的候选者,因为它可以有效地调节OH中间体和HO的吸附能,从而赋予纳米酶优异的POD样性能。基于这一见解,成功合成了硼掺杂的铁基氧化物(FOB),其表现出显著的POD样活性和超快反应动力学。机理研究表明,硼掺杂通过增加电子密度和降低铁中心的配位数来增强电子转移和中间体吸附,同时降低羟基自由基(·OH)形成的能垒和速率决定步骤。作为概念验证,构建了一种集成乙酰胆碱酯酶(AChE)-胆碱氧化酶(ChOx)-POD的三酶级联比色生物传感器,用于对AChE活性和抑制剂进行超灵敏和选择性检测。本研究建立了一个通过掺杂非金属原子设计具有高酶模拟性能的过渡金属氧化物纳米酶的新框架,为通过调节电子和配位环境合理设计纳米酶提供了灵感。