人工智能引导的体素提取和容积电子显微镜将侵入物识别为线粒体接触位点。

AI-directed voxel extraction and volume EM identify intrusions as sites of mitochondrial contact.

作者信息

Padman Benjamin S, Lindblom Runa S J, Lazarou Michael

机构信息

Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash, Australia.

Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.

出版信息

J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202411138. Epub 2025 Jul 30.

Abstract

Membrane contact sites (MCSs) establish organelle interactomes in cells to enable communication and exchange of materials. Volume EM (vEM) is ideally suited for MCS analyses, but semantic segmentation of large vEM datasets remains challenging. Recent adoption of artificial intelligence (AI) for segmentation has greatly enhanced our analysis capabilities. However, we show that organelle boundaries, which are important for defining MCS, are the least confident predictions made by AI. We outline a segmentation strategy termed AI-directed voxel extraction (AIVE), which refines segmentation results and boundary predictions derived from any AI-based method by combining those results with electron signal values. We demonstrate the precision conferred by AIVE by applying it to the quantitative analysis of organelle interactomes from multiple FIB-SEM datasets. Through AIVE, we discover a previously unknown category of mitochondrial contact that we term the mitochondrial intrusion. We hypothesize that intrusions serve as anchors that stabilize MCS and promote organelle communication.

摘要

膜接触位点(MCSs)在细胞中建立细胞器相互作用组,以实现物质的交流和交换。体积电子显微镜(vEM)非常适合用于MCS分析,但对大型vEM数据集进行语义分割仍然具有挑战性。最近采用人工智能(AI)进行分割极大地增强了我们的分析能力。然而,我们发现对于定义MCS很重要的细胞器边界是AI做出的最不可靠的预测。我们概述了一种称为人工智能导向体素提取(AIVE)的分割策略,该策略通过将分割结果与电子信号值相结合,来改进从任何基于AI的方法得出的分割结果和边界预测。我们通过将AIVE应用于对多个聚焦离子束扫描电子显微镜(FIB-SEM)数据集的细胞器相互作用组进行定量分析,证明了AIVE所赋予的精确性。通过AIVE,我们发现了一种以前未知的线粒体接触类型,我们将其称为线粒体侵入。我们假设侵入作为锚点来稳定MCS并促进细胞器通讯。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a06/12309365/fc48b786a61f/jcb_202411138_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索