Chatterjee Tilottama, Taboada Alfonso, Logan Isabelle E, Paul Patience N, Huerta Miranda, Reardon Patrick, Radi Rafael, Zeida Ari, Franco Maria Clara
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, U.S.A.
Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, CP, 11800, Uruguay.
Biochem J. 2025 Aug 20;482(16):BCJ20253230. doi: 10.1042/BCJ20253230.
Protein tyrosine (Y) nitration is an oxidative modification that occurs in pathological conditions such as neurodegenerative diseases and solid tumors. Depending on the location of the tyrosine residue, nitration can modify protein structure and function and affect cellular processes. We previously showed that site-specific nitration of the molecular chaperone heat shock protein 90 (Hsp90) leads to distinct pathological gain-of-function that cannot be compensated or overcome by native Hsp90. While Hsp90 nitrated on Y33 localizes in mitochondria and decreases mitochondrial metabolism, Hsp90 nitrated on Y56 activates the purinergic receptor and calcium channel P2X7, triggering downstream signaling pathways that can lead to either cell proliferation or apoptosis, depending on the cell type. Herein, using complementary biophysical, biochemical, and in silico methods, we show that nitration on Y33 and Y56 triggers significant site-dependent local and global structural changes linked to changes in Hsp90 activity. Nitration of these critical residues led to destabilization of Hsp90 dimer and formation of stable oligomeric species, with differential effects on Hsp90 ATPase and chaperone holdase activities depending on the nitrated residue. Molecular dynamics simulations further support the impact of nitration on Y33 and Y56 on the ATP-lid dynamics and the interaction of ATP with R392, critical to Hsp90 ATPase activity. Establishing the molecular basis of nitration-induced structural changes in Hsp90 leading to disease-driving functions is the first step toward the development of therapeutic approaches selectively targeting these pathological variants of Hsp90.
蛋白质酪氨酸(Y)硝化是一种氧化修饰,发生在神经退行性疾病和实体瘤等病理状态下。根据酪氨酸残基的位置,硝化可改变蛋白质结构和功能,并影响细胞过程。我们之前表明,分子伴侣热休克蛋白90(Hsp90)的位点特异性硝化会导致独特的病理功能获得,而天然Hsp90无法补偿或克服这种情况。Y33位点硝化的Hsp90定位于线粒体并降低线粒体代谢,而Y56位点硝化的Hsp90激活嘌呤能受体和钙通道P2X7,触发下游信号通路,根据细胞类型的不同,可导致细胞增殖或凋亡。在此,我们使用互补的生物物理、生化和计算机模拟方法表明,Y33和Y56位点的硝化会触发与Hsp90活性变化相关的显著位点依赖性局部和全局结构变化。这些关键残基的硝化导致Hsp90二聚体不稳定并形成稳定的寡聚体,根据硝化残基的不同,对Hsp90 ATP酶和伴侣保持酶活性有不同影响。分子动力学模拟进一步支持了Y33和Y56位点硝化对ATP盖动力学以及ATP与R392相互作用(这对Hsp90 ATP酶活性至关重要)的影响。确定Hsp90中硝化诱导的结构变化导致疾病驱动功能的分子基础,是开发选择性靶向Hsp90这些病理变体的治疗方法的第一步。