Lee Sang-Eon, Li Yue, Lee Yeonkyu, Brown W Kice, Cai PeiYu, Yun Jinyoung, Lee Chanyoung, Moon Alex, Mei Lingrui, Kim Jaeyong, Xin Yan, Borchers Julie A, Heitmann Thomas W, Frontzek Matthias, Ratcliff William D, McCandless Gregory T, Chan Julia Y, Santos Elton J G, Kim Jeehoon, Phatak Charudatta M, Kulichenko Vadym, Balicas Luis
National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States.
Department of Physics, Hanyang University, Seoul 04763, Republic of Korea.
ACS Nano. 2025 Aug 12;19(31):28702-28718. doi: 10.1021/acsnano.5c08312. Epub 2025 Jul 30.
The layered compound FeGaTe is attracting attention due to its high Curie temperature, low dimensionality, and the presence of topological spin textures above room temperature, making FeGaTe a good candidate for applications in spintronics. Here, we show, through transmission electron microscopy (TEM) techniques, that FeGaTe single crystals break local inversion symmetry while maintaining global inversion symmetry according to X-ray diffraction. Coupled to the observation of Néel skyrmions via Lorentz-TEM, our structural analysis provides a convincing explanation for their presence in centrosymmetric materials. Magnetization measurements as a function of the temperature display a sharp first-order thermodynamic phase-transition leading to a reduction in the magnetic moment. This implies that the ground state of FeGaTe is globally ferrimagnetic and not a glassy magnetic state composed of ferrimagnetic, and ferromagnetic domains as previously claimed. Neutron diffraction studies indicate that the ferromagnetic-to-ferrimagnetic transition upon reducing the external magnetic field might be associated with a change in the magnetic configuration/coupling between Fe1 and Fe2 moments. We observe a clear correlation between the hysteresis observed in both the skyrmion density and the magnetization of FeGaTe. This indicates that its topological spin textures are affected by the development of ferrimagnetism upon cooling. Observation, via magnetic force microscopy, of magnetic bubbles at the magnetic phase boundary suggests skyrmions stabilized by the competition among magnetic phases and distinct exchange interactions. Our study provides an explanation for the observation of Néel skyrmions in centrosymmetric systems while exposing a correlation between the distinct magnetic phases of FeGaTe and its topological spin textures.
层状化合物FeGaTe因其高居里温度、低维特性以及室温以上存在拓扑自旋纹理而备受关注,这使得FeGaTe成为自旋电子学应用的理想候选材料。在此,我们通过透射电子显微镜(TEM)技术表明,FeGaTe单晶打破了局部反演对称性,同时根据X射线衍射保持了整体反演对称性。结合通过洛伦兹TEM对奈尔斯格明子的观察,我们的结构分析为它们在中心对称材料中的存在提供了令人信服的解释。作为温度函数的磁化测量显示出尖锐的一级热力学相变,导致磁矩减小。这意味着FeGaTe的基态是整体亚铁磁性的,而不是如先前所声称的由亚铁磁性和铁磁畴组成的玻璃态磁状态。中子衍射研究表明,在降低外部磁场时从铁磁到亚铁磁的转变可能与Fe1和Fe2磁矩之间的磁构型/耦合变化有关。我们观察到FeGaTe的斯格明子密度和磁化强度中观察到的磁滞之间存在明显的相关性。这表明其拓扑自旋纹理受到冷却时亚铁磁性发展的影响。通过磁力显微镜在磁相边界观察到磁泡,表明斯格明子由磁相之间的竞争和不同的交换相互作用稳定。我们的研究为在中心对称系统中观察到奈尔斯格明子提供了解释,同时揭示了FeGaTe不同磁相与其拓扑自旋纹理之间的相关性。