Gomez-Angel Andres R, Klein Hanna F, Yao Stephen Y, Donald James R, Firth James D, Appiani Rebecca, Palmer Cameron J, Lincoln Joshua, Lucas Simon C C, Fusani Lucia, Storer R Ian, O'Brien Peter
Department of Chemistry, University of York, York YO10 5DD, U.K.
Hit Discovery, Discovery Sciences, R&D, AstraZeneca, 1 Francis Crick Ave, Cambridge CB2 0AA, U.K.
J Am Chem Soc. 2025 Jul 30. doi: 10.1021/jacs.5c08786.
Fragment-based drug discovery (FBDD) is a key strategy employed in the hit-to-lead phase of pharmaceutical development. The rate-limiting step of this process is often identifying and optimizing synthetic chemistry suitable for fragment elaboration, especially in three dimensions (3-D). To address this limitation, we herein present a modular platform for the systematic and programmable elaboration of two-dimensional (2-D) fragment hits into lead-like 3-D compounds, utilizing nine bifunctional building blocks that explore a range of vectors in 3-D. The building blocks comprise (i) rigid sp-rich bicyclic cyclopropane-based structures to fix the vectors and (ii) two synthetic handles─a protected cyclic amine and a cyclopropyl methyliminodiacetic acid (MIDA) boronate. To validate our approach, we present (i) multigram-scale synthesis of each 3-D building block; (ii) Suzuki-Miyaura cross-coupling reactions of the cyclopropyl BMIDA functionality with aryl bromides; and (iii) -functionalization (via commonplace medicinal chemistry toolkit reactions) of arylated products to deliver 3-D lead-like compounds. Each building block accesses a distinct 3-D exit vector, as shown by analysis of the lowest energy conformations of lead-like molecules using RDKit, and by X-ray crystallography of pyrimidine methanesulfonamide derivatives. Since the synthetic methodology is established in advance of fragment screening and utilizes robust chemistry, the elaboration of fragment hits in 3-D for biochemical screening can be achieved rapidly. To provide proof-of-concept, starting from the drug Ritlecitinib, the development of inhibitors of Janus kinase 3 (JAK3) around a putative pyrrolopyrimidine 2-D fragment hit was explored, streamlining the discovery of a novel and selective JAK3 inhibitor with IC = 69 nM.
基于片段的药物发现(FBDD)是药物研发从苗头化合物到先导化合物阶段所采用的关键策略。该过程的限速步骤通常是识别和优化适合片段拓展的合成化学方法,尤其是在三维(3-D)空间中。为解决这一局限性,我们在此展示了一个模块化平台,用于将二维(2-D)片段苗头系统地、可编程地拓展为类先导三维化合物,利用九个双功能构建模块在三维空间中探索一系列向量。这些构建模块包括:(i)富含sp的刚性双环环丙烷结构以固定向量;(ii)两个合成手柄——一个受保护的环胺和一个环丙基甲基亚氨基二乙酸(MIDA)硼酸酯。为验证我们的方法,我们展示了:(i)每个三维构建模块的多克规模合成;(ii)环丙基BMIDA官能团与芳基溴的铃木-宫浦交叉偶联反应;(iii)芳基化产物的官能团化(通过常见药物化学工具反应)以得到三维类先导化合物。如通过使用RDKit分析类先导分子的最低能量构象以及嘧啶甲磺酰胺衍生物的X射线晶体学所示,每个构建模块都可获得一个独特的三维出口向量。由于合成方法是在片段筛选之前建立的,并且使用了稳健的化学方法,因此可以快速实现用于生化筛选的三维片段苗头的拓展。为提供概念验证,从药物利特昔替尼出发,探索了围绕一个假定的吡咯并嘧啶二维片段苗头开发Janus激酶3(JAK3)抑制剂,简化了一种新型选择性JAK3抑制剂(IC = 69 nM)的发现过程。