Zhao Huili, Zhang Shenao, Chen Lang, Liu Xin, Cao Aihong, Du Peng
Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China; Department of Radiology, Xinyi People's Hospital, Xuzhou 221400, China.
Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China.
Transl Oncol. 2025 Jul 29;60:102482. doi: 10.1016/j.tranon.2025.102482.
To identify key clinical risk factors affecting therapeutic outcomes in relapsed primary central nervous system lymphoma (r-PCNSL) patients undergoing stereotactic radiosurgery salvage therapy (SRS-ST) and develop a decision tree-based predictive model.
A retrospective analysis was performed on r-PCNSL patients undergoing SRS-ST at The Second Affiliated Hospital of Xuzhou Medical University between January 2012 and November 2021. The cohort was randomly divided into training and validation sets (7:3 ratio). The C5.0 algorithm was employed to develop a decision tree model for predicting treatment response. Model performance was evaluated using diagnostic metrics including accuracy (ACC), sensitivity, and specificity.
A cohort of 209 patients meeting inclusion/exclusion criteria were enrolled. Survival analysis revealed a mean progression-free survival (PFS) of 7.5 ± 2.6 months and overall survival (OS) of 13.8 ± 4.1 months. Using multivariate analysis, a decision tree model was developed incorporating three critical prognostic parameters: Karnofsky Performance Status (KPS); deep brain structure involvement; and International Extranodal Lymphoma Study Group (IELSG) score. The model demonstrated robust predictive accuracy, with sensitivities of 0.880-1.000 in the training set versus 0.667-0.880 in the validation set, and corresponding specificities of 0.926-1.000 and 0.854-0.984, respectively.
Our analysis identified critical determinants of therapeutic response in r-PCNSL patients receiving SRS-ST, developing a clinically applicable decision tree model to guide hematologists and neuro-oncologists in personalizing treatment approaches.
确定影响接受立体定向放射外科挽救治疗(SRS-ST)的复发性原发性中枢神经系统淋巴瘤(r-PCNSL)患者治疗结果的关键临床风险因素,并建立基于决策树的预测模型。
对2012年1月至2021年11月在徐州医科大学第二附属医院接受SRS-ST的r-PCNSL患者进行回顾性分析。该队列被随机分为训练集和验证集(比例为7:3)。采用C5.0算法建立预测治疗反应的决策树模型。使用包括准确率(ACC)、敏感性和特异性在内的诊断指标评估模型性能。
纳入了209例符合纳入/排除标准的患者。生存分析显示,平均无进展生存期(PFS)为7.5±2.6个月,总生存期(OS)为13.8±4.1个月。通过多变量分析,建立了一个包含三个关键预后参数的决策树模型:卡诺夫斯基功能状态(KPS);深部脑结构受累情况;以及国际结外淋巴瘤研究组(IELSG)评分。该模型显示出强大的预测准确性,训练集的敏感性为0.880 - 1.000,验证集为0.667 - 0.880,相应的特异性分别为0.926 - 1.000和0.854 - 0.984。
我们的分析确定了接受SRS-ST的r-PCNSL患者治疗反应的关键决定因素,建立了一个临床适用的决策树模型,以指导血液科医生和神经肿瘤学家个性化治疗方案。