Suppr超能文献

预测复发性原发性中枢神经系统淋巴瘤挽救性立体定向放射治疗的结果:一项机器学习驱动的决策树分析

Prognosticating salvage stereotactic radiosurgery outcomes in relapsed primary central nervous system lymphoma: A machine learning-driven decision tree analysis.

作者信息

Zhao Huili, Zhang Shenao, Chen Lang, Liu Xin, Cao Aihong, Du Peng

机构信息

Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China; Department of Radiology, Xinyi People's Hospital, Xuzhou 221400, China.

Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China.

出版信息

Transl Oncol. 2025 Jul 29;60:102482. doi: 10.1016/j.tranon.2025.102482.

Abstract

PURPOSE

To identify key clinical risk factors affecting therapeutic outcomes in relapsed primary central nervous system lymphoma (r-PCNSL) patients undergoing stereotactic radiosurgery salvage therapy (SRS-ST) and develop a decision tree-based predictive model.

PATIENTS AND METHODS

A retrospective analysis was performed on r-PCNSL patients undergoing SRS-ST at The Second Affiliated Hospital of Xuzhou Medical University between January 2012 and November 2021. The cohort was randomly divided into training and validation sets (7:3 ratio). The C5.0 algorithm was employed to develop a decision tree model for predicting treatment response. Model performance was evaluated using diagnostic metrics including accuracy (ACC), sensitivity, and specificity.

RESULTS

A cohort of 209 patients meeting inclusion/exclusion criteria were enrolled. Survival analysis revealed a mean progression-free survival (PFS) of 7.5 ± 2.6 months and overall survival (OS) of 13.8 ± 4.1 months. Using multivariate analysis, a decision tree model was developed incorporating three critical prognostic parameters: Karnofsky Performance Status (KPS); deep brain structure involvement; and International Extranodal Lymphoma Study Group (IELSG) score. The model demonstrated robust predictive accuracy, with sensitivities of 0.880-1.000 in the training set versus 0.667-0.880 in the validation set, and corresponding specificities of 0.926-1.000 and 0.854-0.984, respectively.

CONCLUSIONS

Our analysis identified critical determinants of therapeutic response in r-PCNSL patients receiving SRS-ST, developing a clinically applicable decision tree model to guide hematologists and neuro-oncologists in personalizing treatment approaches.

摘要

目的

确定影响接受立体定向放射外科挽救治疗(SRS-ST)的复发性原发性中枢神经系统淋巴瘤(r-PCNSL)患者治疗结果的关键临床风险因素,并建立基于决策树的预测模型。

患者与方法

对2012年1月至2021年11月在徐州医科大学第二附属医院接受SRS-ST的r-PCNSL患者进行回顾性分析。该队列被随机分为训练集和验证集(比例为7:3)。采用C5.0算法建立预测治疗反应的决策树模型。使用包括准确率(ACC)、敏感性和特异性在内的诊断指标评估模型性能。

结果

纳入了209例符合纳入/排除标准的患者。生存分析显示,平均无进展生存期(PFS)为7.5±2.6个月,总生存期(OS)为13.8±4.1个月。通过多变量分析,建立了一个包含三个关键预后参数的决策树模型:卡诺夫斯基功能状态(KPS);深部脑结构受累情况;以及国际结外淋巴瘤研究组(IELSG)评分。该模型显示出强大的预测准确性,训练集的敏感性为0.880 - 1.000,验证集为0.667 - 0.880,相应的特异性分别为0.926 - 1.000和0.854 - 0.984。

结论

我们的分析确定了接受SRS-ST的r-PCNSL患者治疗反应的关键决定因素,建立了一个临床适用的决策树模型,以指导血液科医生和神经肿瘤学家个性化治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96db/12329516/1bf9e7f696fe/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验