Suppr超能文献

生物质衍生的氮、磷共掺杂生物炭作为一种双功能浮动阴极,通过自持续曝气实现高效的羟基自由基电合成和电芬顿催化。

Biomass-derived N, P co-doped biochar as a bifunctional floating cathode for energy-efficient HO electrosynthesis and electro-Fenton catalysis through self-sustained aeration.

作者信息

Huo Siyue, Zhao Quanyou, Wang Yichao, Su Ruidian, Gao Mengchun

机构信息

Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.

Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.

出版信息

Environ Res. 2025 Jul 28;285(Pt 3):122463. doi: 10.1016/j.envres.2025.122463.

Abstract

HO electrosynthesis via oxygen reduction reaction (ORR) is a green and sustainable strategy for on-site electro-Fenton processes, yet it suffers from high aeration energy consumption and poor O utilization efficiency. Here, N, P self-doped porous carbon (NP/PC) was synthesized from agricultural waste without exogenous dopants or templates to fabricate self-floating gas diffusion electrode (GDE) for HO electrosynthesis. A higher pyrolysis temperature promoted porous structures formation in NP/PC, whereas the N/P functional groups content decreased as pyrolysis temperature increased from 450 °C to 600 °C. The optimized NP/PC-500 exhibited the highest HO selectivity of 81.1 % for its balanced active sites and N/P doping levels. Compared with air-aerated cathode, the fabricated self-floating NP/PC-500-GDE realized self-sustained aeration by utilizing atmospheric O. The rapid O diffusion at the triple-phase interfaces of self-floating NP/PC-500-GDE reduced aeration energy consumption and enabled a higher HO yield (586.7 mg/L), which was 1.6 times that of the air-aerated NP/PC-500-GDE. Besides, the self-floating NP/PC-500-GDE exhibited good scalability with its geometric area scaled up from 6 to 150 cm. Density functional theory calculations and regression analysis verified the pyrrolic N and P-C group as dominant sites for HO electrosynthesis. Notably, the asymmetrical local electric fields induced by N, P self-doping accelerated charge transfer and lowered O adsorption energy. This electro-Fenton system with self-floating NP/PC-500-GDE as cathode achieved efficient degradation of diverse contaminants. This work not only offers a green and low-cost strategy for upcycling biomass waste into functional materials but also proposes a bifunctional self-floating cathode for aeration-free HO electrosynthesis and electro-Fenton catalysis.

摘要

通过氧还原反应(ORR)进行的过氧化氢电合成是一种用于现场电芬顿过程的绿色可持续策略,然而它存在曝气能耗高和氧利用效率低的问题。在此,以农业废弃物为原料,无需外源性掺杂剂或模板,合成了氮、磷自掺杂多孔碳(NP/PC),用于制备用于过氧化氢电合成的自漂浮气体扩散电极(GDE)。较高的热解温度促进了NP/PC中多孔结构的形成,而随着热解温度从450℃升高到600℃,氮/磷官能团含量降低。优化后的NP/PC-500因其平衡的活性位点和氮/磷掺杂水平,表现出最高的81.1%的过氧化氢选择性。与曝气阴极相比,制备的自漂浮NP/PC-500-GDE通过利用大气中的氧气实现了自维持曝气。自漂浮NP/PC-500-GDE三相界面处快速的氧扩散降低了曝气能耗,并实现了更高的过氧化氢产率(586.7mg/L),这是曝气NP/PC-500-GDE的1.6倍。此外,自漂浮NP/PC-500-GDE在其几何面积从6扩大到150cm²时表现出良好的可扩展性。密度泛函理论计算和回归分析证实吡咯氮和磷碳基团是过氧化氢电合成的主要位点。值得注意的是,氮、磷自掺杂引起的不对称局部电场加速了电荷转移并降低了氧吸附能。这种以自漂浮NP/PC-500-GDE为阴极的电芬顿系统实现了对多种污染物的高效降解。这项工作不仅提供了一种将生物质废物升级转化为功能材料的绿色低成本策略,还提出了一种用于无曝气过氧化氢电合成和电芬顿催化的双功能自漂浮阴极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验