Selvakumar Sadhana, Senthilkumar B
Department of Electronics and Communication Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, 641402, India.
Sci Rep. 2025 Jul 30;15(1):27880. doi: 10.1038/s41598-025-07622-1.
Medical image analysis using deep learning algorithms has become a basis of modern healthcare, enabling early detection, diagnosis, treatment planning, and disease monitoring. However, sharing sensitive raw medical data with third parties for analysis raises significant privacy concerns. This paper presents a privacy-preserving machine learning (PPML) framework using a Fully Connected Neural Network (FCNN) for secure medical image analysis using the MedMNIST dataset. The proposed PPML framework leverages a torus-based fully homomorphic encryption (TFHE) to ensure data privacy during inference, maintain patient confidentiality, and ensure compliance with privacy regulations. The FCNN model is trained in a plaintext environment for FHE compatibility using Quantization-Aware Training to optimize weights and activations. The quantized FCNN model is then validated under FHE constraints through simulation and compiled into an FHE-compatible circuit for encrypted inference on sensitive data. The proposed framework is evaluated on the MedMNIST datasets to assess its accuracy and inference time in both plaintext and encrypted environments. Experimental results reveal that the PPML framework achieves a prediction accuracy of 88.2% in the plaintext setting and 87.5% during encrypted inference, with an average inference time of 150 milliseconds per image. This shows that FCNN models paired with TFHE-based encryption achieve high prediction accuracy on MedMNIST datasets with minimal performance degradation compared to unencrypted inference.
使用深度学习算法进行医学图像分析已成为现代医疗保健的基础,能够实现早期检测、诊断、治疗规划和疾病监测。然而,与第三方共享敏感的原始医学数据进行分析引发了重大的隐私担忧。本文提出了一种隐私保护机器学习(PPML)框架,该框架使用全连接神经网络(FCNN),通过MedMNIST数据集进行安全的医学图像分析。所提出的PPML框架利用基于环面的全同态加密(TFHE)来确保推理过程中的数据隐私,维护患者的机密性,并确保符合隐私法规。FCNN模型在明文环境中进行训练,以实现与FHE的兼容性,使用量化感知训练来优化权重和激活。然后,通过模拟在FHE约束下对量化的FCNN模型进行验证,并将其编译成一个与FHE兼容的电路,用于对敏感数据进行加密推理。在所提出的框架在MedMNIST数据集上进行评估,以评估其在明文和加密环境中的准确性和推理时间。实验结果表明,PPML框架在明文设置下的预测准确率为88.2%,在加密推理期间为87.5%,每张图像的平均推理时间为150毫秒。这表明,与未加密推理相比,与基于TFHE的加密相结合的FCNN模型在MedMNIST数据集上实现了较高的预测准确率,且性能下降最小。