Suppr超能文献

基于多通道融合的头颈部癌患者放射性口干预测深度学习模型

A deep learning model for predicting radiation-induced xerostomia in patients with head and neck cancer based on multi-channel fusion.

作者信息

Lin Lin, Ren Yuchen, Jian Wanwei, Yang Geng, Zhang Bailin, Zhu Lin, Zhao Wenhao, Meng Haoyu, Wang Xuetao, He Qiang

机构信息

Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.

The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China.

出版信息

BMC Med Imaging. 2025 Jul 30;25(1):305. doi: 10.1186/s12880-025-01848-1.

Abstract

OBJECTIVES

Radiation-induced xerostomia is a common sequela in patients who undergo head and neck radiation therapy. This study aims to develop a three-dimensional deep learning model to predict xerostomia by fusing data from the gross tumor volume primary (GTVp) channel and parotid glands (PGs) channel.

METHODS

Retrospective data were collected from 180 head and neck cancer patients. Xerostomia was defined as xerostomia of grade ≥ 2 occurring in the 6th month of radiation therapy. The dataset was split into 137 cases (58.4% xerostomia, 41.6% non-xerostomia) for training and 43 (55.8% xerostomia, 44.2% non-xerostomia) for testing. XeroNet was composed of GNet, PNet, and a Naive Bayes decision fusion layer. GNet processed data from the GTVp channel (CT, dose distributions corresponding and the GTVp contours). PNet processed data from the PGs channel (CT, dose distributions and the PGs contours). The Naive Bayes decision fusion layer was used to integrate the results from GNet and PNet. Model performance was evaluated using accuracy, F-score, sensitivity, specificity, and area under the receiver operator characteristic curve (AUC).

RESULTS

The proposed model achieved promising prediction results. The accuracy, AUC, F-score, sensitivity and specificity were 0.779, 0.858, 0.797, 0.777, and 0.782, respectively. Features extracted from the CT and dose distributions in the GTVp and PGs regions were used to construct machine learning models. However, the performance of these models was inferior to our method. Compared with recent studies on xerostomia prediction, our method also showed better performance.

CONCLUSIONS

The proposed model could effectively extract features from the GTVp and PGs channels, achieving good performance in xerostomia prediction.

摘要

目的

放射性口干症是头颈部放疗患者常见的后遗症。本研究旨在开发一种三维深度学习模型,通过融合来自大体肿瘤体积原发灶(GTVp)通道和腮腺(PGs)通道的数据来预测口干症。

方法

收集了180名头颈部癌患者的回顾性数据。将放疗第6个月出现的≥2级口干症定义为口干症。数据集分为137例(58.4%为口干症,41.6%为无口干症)用于训练,43例(55.8%为口干症,44.2%为无口干症)用于测试。XeroNet由GNet、PNet和一个朴素贝叶斯决策融合层组成。GNet处理来自GTVp通道的数据(CT、相应的剂量分布和GTVp轮廓)。PNet处理来自PGs通道的数据(CT、剂量分布和PGs轮廓)。朴素贝叶斯决策融合层用于整合GNet和PNet的结果。使用准确率、F值、灵敏度、特异性和受试者工作特征曲线下面积(AUC)评估模型性能。

结果

所提出的模型取得了有前景的预测结果。准确率、AUC、F值、灵敏度和特异性分别为0.779、0.858、0.797、0.777和0.782。从GTVp和PGs区域的CT和剂量分布中提取的特征用于构建机器学习模型。然而,这些模型的性能不如我们的方法。与最近关于口干症预测的研究相比,我们的方法也表现出更好的性能。

结论

所提出的模型能够有效地从GTVp和PGs通道中提取特征,在口干症预测方面取得了良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/154c/12312364/55573145959e/12880_2025_1848_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验