Peters Josh P, Xiang Hang, Assaf Charbel D, Haj Mohamad Farhad, Rosenstiel Philip, Schreiber Stefan, Hövener Jan-Bernd, Aden Konrad, Pravdivtsev Andrey N
Section Biomedical Imaging, Molecular Imaging North Competence Center, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany.
Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
Magn Reson Med. 2025 Dec;94(6):2567-2577. doi: 10.1002/mrm.70008. Epub 2025 Jul 30.
Colorectal cancer, a leading cause of death in the Western world, is increasingly affecting younger populations. The Warburg effect, characterized by enhanced lactate production, is a hallmark of this cancer type. Although F-FDG PET-CT is commonly used for diagnosis, MRI offers higher spatial and chemical resolution without the drawbacks of radiation. However, MRI's low sensitivity has been a barrier to real-time metabolic imaging, and hence its implementation in clinical practice. Hyperpolarization has significantly boosted NMR sensitivity, enabling detailed metabolic studies in vivo.
This study uses hyperpolarized [1-C]pyruvate with dissolution dynamic nuclear polarization to noninvasively monitor metabolic changes in intestinal organoids from a genetically defined mouse model of spontaneous carcinogenesis (Rnaseh2b/Xbp1) with a previously established targeted therapeutic intervention (mTOR inhibition by rapamycin).
Hyperpolarized NMR revealed a 6.6-fold reduction (p < 0.05) in lactate production in rapamycin-treated organoids, indicating suppressed metabolic activity. This method also detected alanine and bicarbonate metabolism, highlighting its sensitivity. Unlike traditional methods that destroy cellular integrity, hyperpolarization enabled repetitive, noninvasive metabolic assessments.
Hyperpolarized [1-13C]pyruvate combined with NMR enables noninvasive, longitudinal monitoring of tumor metabolism in intestinal organoids while preserving cell viability and recultivation potential, bridging preclinical and clinical applications and affirming the method's potential for targeted metabolic imaging as a novel diagnostic and treatment control approach in cancer medicine.
结直肠癌是西方世界主要的死亡原因之一,且越来越多地影响年轻人群。以乳酸生成增加为特征的瓦伯格效应是这种癌症类型的一个标志。虽然F-FDG PET-CT常用于诊断,但MRI具有更高的空间和化学分辨率,且没有辐射的缺点。然而,MRI的低灵敏度一直是实时代谢成像的障碍,因此限制了其在临床实践中的应用。超极化显著提高了核磁共振灵敏度,能够在体内进行详细的代谢研究。
本研究使用超极化的[1-13C]丙酮酸与溶解动态核极化技术,对来自具有自发致癌作用的基因定义小鼠模型(Rnaseh2b/Xbp1)且有先前确立的靶向治疗干预(用雷帕霉素抑制mTOR)的肠道类器官的代谢变化进行无创监测。
超极化核磁共振显示,雷帕霉素处理的类器官中乳酸生成减少了6.6倍(p < 0.05),表明代谢活性受到抑制。该方法还检测到了丙氨酸和碳酸氢盐代谢,突出了其灵敏度。与破坏细胞完整性的传统方法不同,超极化能够进行重复的无创代谢评估。
超极化的[1-13C]丙酮酸与核磁共振相结合,能够在保持细胞活力和再培养潜力的同时,对肠道类器官中的肿瘤代谢进行无创、纵向监测,架起了临床前和临床应用之间的桥梁,并肯定了该方法作为癌症医学中一种新型诊断和治疗控制方法在靶向代谢成像方面的潜力。