Chen Shaojie, Narayan Sanjiv M, Boveda Serge, Neven Kars, Ruwald Martin H, Martinek Martin, Futyma Piotr, Meyer Christian, Heeger Christian-Hendrik, Sommer Philipp, Schratter Alexandra, Mulder Bart A, Kiuchi Márcio Galindo, Kojodjojo Pipin, Chow Jeremy, Tam Mark T K, Sun Zhijun, Zhong Jingquan, Yin Yuehui, Schmidt Boris, Chun Julian K R, Chen Minglong, Pürerfellner Helmut
Rhythmology and Clinical Cardiac Electrophysiology, Klinik Internal Medicine B (Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine), University Medicine Greifswald, Greifswald, Germany (S.C.).
Cardioangiologisches Centrum Bethanien (CCB), Medizinische Klinik III, Agaplesion Markus Krankenhaus, Frankfurt Am Main, Germany (S.C., B.S., J.K.R.C.).
Circ Arrhythm Electrophysiol. 2025 Aug;18(8):e013977. doi: 10.1161/CIRCEP.125.013977. Epub 2025 Jul 31.
Pulsed field ablation (PFA) has been developed as a largely nonthermal ablation technology with a unique biophysical profile to treat atrial fibrillation. Existing evidence has shown that PFA offers a safe and efficient atrial fibrillation ablation procedure. Among different PFA technologies, the pentaspline FARAPULSE system has been the most extensively used and investigated; however, notable variability exists in workflow, fluoroscopy time, and lesion durability. While innovations such as 3-dimensional electroanatomic mapping systems and intracardiac echocardiography can enhance procedural precision in catheter ablation, fluoroscopy remains the primary imaging modality for guiding pentaspline PFA in many electrophysiology labs worldwide. This is particularly true in centers where limitations in cost, infrastructure, or training may preclude the routine use of advanced imaging technologies. This article summarizes general practical considerations and presents a primarily fluoroscopy-based, refined workflow developed by a group of experts. The goal is to provide a procedural foundation and practical guide for using the pentaspline FARAPULSE PFA system in atrial fibrillation ablation procedures. Developing a fluoroscopy-based practical guide would: (1) Democratize access to PFA technology, enabling safe and effective implementation across a broader range of clinical settings, including those without intracardiac echocardiography or 3-dimensional mapping support; (2) Reduce procedural heterogeneity by offering reproducible best practices; (3) Facilitate meaningful intercenter comparisons of procedural efficacy and safety, aiding in the identification of optimal approaches and improving the quality of clinical data for ongoing research, registries, and real-world performance monitoring of PFA technologies; and (4) Ultimately improve patient outcomes through standardized, accessible, and evidence-based practices.
脉冲场消融(PFA)已发展成为一种主要的非热消融技术,具有独特的生物物理特性,用于治疗心房颤动。现有证据表明,PFA提供了一种安全有效的心房颤动消融程序。在不同的PFA技术中,五边形FARAPULSE系统是使用和研究最广泛的;然而,在工作流程、透视时间和病变耐久性方面存在显著差异。虽然三维电解剖标测系统和心腔内超声心动图等创新技术可以提高导管消融的手术精度,但在全球许多电生理实验室中,透视仍然是引导五边形PFA的主要成像方式。在那些成本、基础设施或培训受限可能妨碍常规使用先进成像技术的中心尤其如此。本文总结了一般的实际考虑因素,并介绍了一组专家开发的主要基于透视的优化工作流程。目标是为在心房颤动消融手术中使用五边形FARAPULSE PFA系统提供手术基础和实用指南。制定基于透视的实用指南将:(1)使PFA技术更易于获得,能够在更广泛的临床环境中安全有效地实施,包括那些没有心腔内超声心动图或三维标测支持的环境;(2)通过提供可重复的最佳实践来减少手术异质性;(3)促进手术疗效和安全性的有意义的中心间比较,有助于确定最佳方法,并提高正在进行的研究、注册和PFA技术实际应用监测的临床数据质量;(4)最终通过标准化、可及且基于证据的实践改善患者预后。