Wang Jindong, Mao Yutong, Liu Xiao, Hao Wenrui
Department of Mathematics, Penn State University, University Park, PA, USA.
Department of Biomedical Engineering, Penn State University, University Park, PA, USA.
ArXiv. 2025 Jul 22:arXiv:2507.16148v1.
Alzheimer's disease (AD) is a complex, multifactorial neurodegenerative disorder with substantial heterogeneity in progression and treatment response. Despite recent therapeutic advances, predictive models capable of accurately forecasting individualized disease trajectories remain limited. Here, we present a machine learning-based operator learning framework for personalized modeling of AD progression, integrating longitudinal multimodal imaging, biomarker, and clinical data. Unlike conventional models with prespecified dynamics, our approach directly learns patient-specific disease operators governing the spatiotemporal evolution of amyloid, tau, and neurodegeneration biomarkers. Using Laplacian eigenfunction bases, we construct geometry-aware neural operators capable of capturing complex brain dynamics. Embedded within a digital twin paradigm, the framework enables individualized predictions, simulation of therapeutic interventions, and in silico clinical trials. Applied to AD clinical data, our method achieves high prediction accuracy exceeding 90% across multiple biomarkers, substantially outperforming existing approaches. This work offers a scalable, interpretable platform for precision modeling and personalized therapeutic optimization in neurodegenerative diseases.
阿尔茨海默病(AD)是一种复杂的多因素神经退行性疾病,其进展和治疗反应存在显著异质性。尽管最近在治疗方面取得了进展,但能够准确预测个体化疾病轨迹的预测模型仍然有限。在此,我们提出了一种基于机器学习的算子学习框架,用于AD进展的个性化建模,整合了纵向多模态成像、生物标志物和临床数据。与具有预先指定动力学的传统模型不同,我们的方法直接学习控制淀粉样蛋白、tau蛋白和神经退行性变生物标志物时空演变的患者特异性疾病算子。使用拉普拉斯特征函数基,我们构建了能够捕捉复杂脑动力学的几何感知神经算子。该框架嵌入数字孪生范式中,能够进行个体化预测、模拟治疗干预以及开展虚拟临床试验。应用于AD临床数据时,我们的方法在多种生物标志物上实现了超过90%的高预测准确率,显著优于现有方法。这项工作为神经退行性疾病的精准建模和个性化治疗优化提供了一个可扩展、可解释的平台。