Suppr超能文献

SaGP:基于机器学习技术鉴定植物耐盐碱基因

SaGP: identifying plant saline-alkali tolerance genes based on machine learning techniques.

作者信息

Qiao Baixue, Gao Wentao, Zhang Xudong, Du Min, Wang Shuda, Liu Xuanrui, Pang Shaozi, Yang Chunxue, Wang Jiang, Zhao Yuming, Xie Linan

机构信息

School of Ecology, Northeast Forestry University, Harbin, China.

Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China.

出版信息

Front Plant Sci. 2025 Jul 16;16:1629794. doi: 10.3389/fpls.2025.1629794. eCollection 2025.

Abstract

Mining novel genes underlying agronomical traits is a crucial subject in plant biology, essential for enhancing crop quality, ensuring food security, and preserving biodiversity. Wet experiments are the main methods to uncover genes with target functions but are expensive and time-consuming. Machine learning, in contrast, can accelerate the gene discovery process by learning from accumulated data, making it more efficient and cost-effective. However, despite their potential, existing machine-learning tools to mine stress-resistant genes in plants are scarce. In this study, we developed the first known machine learning model, SaGP (Saline-alkali Genes Prediction), to identify plant saline-alkali tolerance genes based on sequencing data. It outperformed traditional computational tools, , BLAST, and correctly identified the latest published genes. Moreover, we utilized SaGP to evaluate three recently published genes: , , and . SaGP correctly identified all their functions. Overall, these results suggest that SaGP can be used for the large-scale identification of saline-alkali tolerance genes and served as a framework for the development of additional automated tools, thus promoting crop breeding and plant conservation. To efficiently identify salt-alkali resistant genes in large-scale data, we developed a user-friendly, freely accessible web service platform based on SaGP (https://www.sagprediction.com/).

摘要

挖掘农艺性状潜在的新基因是植物生物学中的一个关键课题,对于提高作物品质、确保粮食安全和保护生物多样性至关重要。湿实验是发现具有目标功能基因的主要方法,但成本高昂且耗时。相比之下,机器学习可以通过从积累的数据中学习来加速基因发现过程,使其更高效且更具成本效益。然而,尽管具有潜力,但现有的用于挖掘植物抗逆基因的机器学习工具却很稀缺。在本研究中,我们开发了首个已知的机器学习模型SaGP(盐碱基因预测模型),用于基于测序数据识别植物耐盐碱基因。它优于传统计算工具BLAST,并正确识别了最新发表的基因。此外,我们利用SaGP评估了最近发表的三个基因:[此处原文缺失基因名称]、[此处原文缺失基因名称]和[此处原文缺失基因名称]。SaGP正确识别了它们所有的功能。总体而言,这些结果表明SaGP可用于大规模识别耐盐碱基因,并作为开发更多自动化工具的框架,从而促进作物育种和植物保护。为了在大规模数据中高效识别抗盐碱基因,我们基于SaGP开发了一个用户友好、可免费访问的网络服务平台(https://www.sagprediction.com/)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f917/12307364/f8b41e66b00f/fpls-16-1629794-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验