Suppr超能文献

在中国一个小规模队列中对多种肺癌多基因风险评分模型的评估。

Evaluation of diverse polygenic risk score models for lung cancer in a small-scale Chinese cohort.

作者信息

Gao Min, Zheng Qiwen, Jiang Yue, Chang Xiao, Zheng Xin

机构信息

The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.

Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.

出版信息

Front Genet. 2025 Jul 16;16:1646997. doi: 10.3389/fgene.2025.1646997. eCollection 2025.

Abstract

INTRODUCTION

Lung cancer is a leading cause of cancer-related mortality globally, with distinct epidemiological and genetic patterns in East Asian populations. However, most polygenic risk score (PRS) models have been developed using European-ancestry cohorts, raising concerns about their applicability in non-European populations.

MATERIALS AND METHODS

In this study, we systematically evaluated the predictive performance of three PRS approaches in a Chinese lung cancer cohort consisting of 97 cases and 667 controls. We assessed (i) a previously reported 19-SNP PRS developed in Chinese individuals, (ii) genome-wide PRS derived using PRS-CS with East Asian and European GWAS summary statistics, and (iii) PRS-CSx, a cross-population Bayesian framework that integrates summary statistics across ancestries.

RESULTS

The 19-SNP PRS demonstrated limited discriminative power in our cohort. In contrast, PRS-CS using East Asian summary statistics showed significant associations with overall lung cancer and specific histological subtypes, particularly NSCLC and LUAD. PRS-CS based on European data yielded weaker performance, underscoring the importance of ancestry matching. Notably, PRS-CSx outperformed single-ancestry models, achieving improved risk stratification for NSCLC and LUAD. However, its predictive performance for LUSC and SCLC remained limited, likely due to sample size constraints and subtype heterogeneity.

CONCLUSION

Our findings emphasize the critical role of ancestry-matched data and integrative PRS approaches in enhancing risk prediction in underrepresented populations. PRS-CSx represents a promising tool for lung cancer risk assessment in East Asians, though further validation in larger cohorts are needed to improve generalizability and clinical utility.

摘要

引言

肺癌是全球癌症相关死亡的主要原因,在东亚人群中具有独特的流行病学和遗传模式。然而,大多数多基因风险评分(PRS)模型是使用欧洲血统队列开发的,这引发了人们对其在非欧洲人群中适用性的担忧。

材料与方法

在本研究中,我们系统评估了三种PRS方法在中国肺癌队列(由97例病例和667例对照组成)中的预测性能。我们评估了:(i)先前在中国个体中开发的一个包含19个单核苷酸多态性(SNP)的PRS;(ii)使用PRS-CS结合东亚和欧洲全基因组关联研究(GWAS)汇总统计数据得出的全基因组PRS;以及(iii)PRS-CSx,一种整合不同血统汇总统计数据的跨人群贝叶斯框架。

结果

19-SNP PRS在我们的队列中显示出有限的鉴别能力。相比之下,使用东亚汇总统计数据的PRS-CS与总体肺癌及特定组织学亚型,特别是非小细胞肺癌(NSCLC)和肺腺癌(LUAD),显示出显著关联。基于欧洲数据的PRS-CS表现较弱,这凸显了血统匹配的重要性。值得注意的是,PRS-CSx优于单血统模型,在NSCLC和LUAD的风险分层方面有所改善。然而,其对肺鳞状细胞癌(LUSC)和小细胞肺癌(SCLC)的预测性能仍然有限,可能是由于样本量限制和亚型异质性。

结论

我们的研究结果强调了血统匹配数据和综合PRS方法在增强代表性不足人群风险预测中的关键作用。PRS-CSx是东亚人群肺癌风险评估的一个有前景的工具,不过需要在更大队列中进一步验证以提高其普遍性和临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d10d/12307216/4ff5e146f789/fgene-16-1646997-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验