Suppr超能文献

重放大师:用于持续语义分割的自动样本选择与有效内存利用

Replay Master: Automatic Sample Selection and Effective Memory Utilization for Continual Semantic Segmentation.

作者信息

Zhu Lanyun, Chen Tianrun, Yin Jianxiong, See Simon, Soh De Wen, Liu Jun

出版信息

IEEE Trans Pattern Anal Mach Intell. 2025 Jul 31;PP. doi: 10.1109/TPAMI.2025.3594040.

Abstract

Continual Semantic Segmentation (CSS) extends static semantic segmentation by incrementally introducing new classes for training. To alleviate the catastrophic forgetting issue in this task, replay methods can be adopted, constructing a memory buffer that stores a small number of samples from previous classes for future replay. However, existing replay approaches in CSS often lack a thorough exploration of two critical issues: how to find the most suitable memory samples and how to utilize them for replay more effectively. Common strategies either randomly select samples or rely on hand-crafted, single-factor-driven methods that are hard to be optimal, and often employ conventional training techniques for replay that do not account for class imbalance problem resulting from limited memory capacity. In this work, we tackle these challenges by introducing a novel memory sample selection method that leverages a reinforcement learning framework with innovative state representations and a dual-stage action scheme to automatically learn a selection policy. Additionally, we propose an expert mechanism and a dual-phase training method to address the class imbalance issue, thereby enhancing the effectiveness of replay training by making better use of memory samples. Incorporating the proposed automatic sample selection and effective memory utilization methods, we develop a novel and effective replay-based pipeline for CSS. Our extensive experiments on Pascal VOC 2012 and ADE20K datasets demonstrate the effectiveness of our approach, which achieves state-of-the-art (SOTA) performance and outperforms previous advanced methods significantly.

摘要

连续语义分割(CSS)通过逐步引入新类进行训练来扩展静态语义分割。为了缓解此任务中的灾难性遗忘问题,可以采用重放方法,构建一个内存缓冲区,该缓冲区存储来自先前类别的少量样本以供将来重放。然而,CSS中现有的重放方法通常缺乏对两个关键问题的深入探索:如何找到最合适的内存样本以及如何更有效地利用它们进行重放。常见策略要么随机选择样本,要么依赖手工制作的、单因素驱动的方法,这些方法很难达到最优,并且通常采用传统的训练技术进行重放,而没有考虑到由于内存容量有限导致的类别不平衡问题。在这项工作中,我们通过引入一种新颖的内存样本选择方法来应对这些挑战,该方法利用具有创新状态表示和双阶段动作方案的强化学习框架来自动学习选择策略。此外我们提出了一种专家机制和双阶段训练方法来解决类别不平衡问题,从而通过更好地利用内存样本提高重放训练的有效性。结合所提出的自动样本选择和有效的内存利用方法,我们为CSS开发了一种新颖且有效的基于重放的管道。我们在Pascal VOC 2012和ADE20K数据集上进行的大量实验证明了我们方法的有效性,该方法实现了当前最优(SOTA)性能,并且显著优于先前的先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验