Chen Yihang, Wu Qianyi, Lin Weiyao, Harandi Mehrtash, Cai Jianfei
IEEE Trans Pattern Anal Mach Intell. 2025 Nov;47(11):10210-10226. doi: 10.1109/TPAMI.2025.3594066.
3D Gaussian Splatting (3DGS) has emerged as a promising representation for novel view synthesis, boosting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. In this paper, we propose HAC++, which explicitly minimizes the representation's entropy during optimization, enabling efficient arithmetic coding after training for compressed storage. Specifically, to reduce entropy, HAC++ leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate non-effective Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over $100\times$100× compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than $20\times$20× size reduction compared to Scaffold-GS.
3D高斯点渲染(3DGS)已成为一种用于新视图合成的有前途的表示方法,在高保真度的情况下提高了渲染速度。然而,大量的高斯分布及其相关属性需要有效的压缩技术。尽管如此,高斯点云(或本文中的锚点)的稀疏和无序性质给压缩带来了挑战。在本文中,我们提出了HAC++,它在优化过程中明确地最小化表示的熵,在训练后实现高效的算术编码以进行压缩存储。具体来说,为了降低熵,HAC++利用无序锚点和结构化哈希网格之间的关系,利用它们的互信息进行上下文建模。此外,HAC++捕捉锚点内的上下文关系以进一步提高压缩性能。为了便于熵编码,我们利用高斯分布精确估计每个量化属性的概率,其中提出了一个自适应量化模块,以实现这些属性的高精度量化,从而提高保真度恢复。此外,我们采用了一种自适应掩码策略来消除无效的高斯分布和锚点。总体而言,与普通3DGS相比,HAC++在所有数据集上平均实现了超过100倍的显著尺寸缩减,同时提高了保真度。与Scaffold-GS相比,它还实现了超过20倍的尺寸缩减。