Wang Haoyu, Guo Sizheng, Ye Jin, Deng Zhongying, Cheng Junlong, Li Tianbin, Chen Jianpin, Su Yanzhou, Huang Ziyan, Shen Yiqing, zzzzFu Bin, Zhang Shaoting, He Junjun
IEEE Trans Neural Netw Learn Syst. 2025 Jul 31;PP. doi: 10.1109/TNNLS.2025.3586694.
Existing volumetric medical image segmentation models are typically task-specific, excelling at specific targets but struggling to generalize across anatomical structures or modalities. This limitation restricts their broader clinical use. In this article, we introduce segment anything model (SAM)-Med3D, a vision foundation model (VFM) for general-purpose segmentation on volumetric medical images. Given only a few 3-D prompt points, SAM-Med3D can accurately segment diverse anatomical structures and lesions across various modalities. To achieve this, we gather and preprocess a large-scale 3-D medical image segmentation dataset, SA-Med3D-140K, from 70 public datasets and 8K licensed private cases from hospitals. This dataset includes 22K 3-D images and 143K corresponding masks. SAM-Med3D, a promptable segmentation model characterized by its fully learnable 3-D structure, is trained on this dataset using a two-stage procedure and exhibits impressive performance on both seen and unseen segmentation targets. We comprehensively evaluate SAM-Med3D on 16 datasets covering diverse medical scenarios, including different anatomical structures, modalities, targets, and zero-shot transferability to new/unseen tasks. The evaluation demonstrates the efficiency and efficacy of SAM-Med3D, as well as its promising application to diverse downstream tasks as a pretrained model. Our approach illustrates that substantial medical resources can be harnessed to develop a general-purpose medical AI for various potential applications. Our dataset, code, and models are available at: https://github.com/uni-medical/SAM-Med3D.
现有的体积医学图像分割模型通常是针对特定任务的,在特定目标上表现出色,但难以在不同解剖结构或模态之间进行泛化。这种局限性限制了它们在更广泛临床中的应用。在本文中,我们介绍了分割一切模型(SAM)-Med3D,这是一种用于体积医学图像通用分割的视觉基础模型(VFM)。仅给定几个3D提示点,SAM-Med3D就能准确分割各种模态下的不同解剖结构和病变。为实现这一点,我们从70个公共数据集和来自医院的8000个获得许可的私人病例中收集并预处理了一个大规模的3D医学图像分割数据集SA-Med3D-140K。该数据集包括22000张3D图像和143000个相应的掩码。SAM-Med3D是一种可提示的分割模型,其特点是具有完全可学习的3D结构,在这个数据集上使用两阶段程序进行训练,并在可见和不可见的分割目标上都表现出令人印象深刻的性能。我们在16个涵盖不同医学场景的数据集上全面评估了SAM-Med3D,包括不同的解剖结构、模态、目标以及对新的/不可见任务的零样本可转移性。评估证明了SAM-Med3D的效率和有效性,以及它作为预训练模型在各种下游任务中的应用前景。我们的方法表明,可以利用大量医学资源来开发用于各种潜在应用的通用医学人工智能。我们的数据集、代码和模型可在以下网址获取:https://github.com/uni-medical/SAM-Med3D。