Suppr超能文献

EICSeg:通过显式上下文学习实现通用医学图像分割

EICSeg: Universal Medical Image Segmentation via Explicit In-Context Learning.

作者信息

Xie Shiao, Zhang Liangjun, Niu Ziwei, Ye Fanfan, Zhong Qiaoyong, Xie Di, Chen Yen-Wei, Lin Lanfen

出版信息

IEEE Trans Med Imaging. 2025 Jul 22;PP. doi: 10.1109/TMI.2025.3591565.

Abstract

Deep learning models for medical image segmentation often struggle with task-specific characteristics, limiting their generalization to unseen tasks with new anatomies, labels, or modalities. Retraining or fine-tuning these models requires substantial human effort and computational resources. To address this, in-context learning (ICL) has emerged as a promising paradigm, enabling query image segmentation by conditioning on example image-mask pairs provided as prompts. Unlike previous approaches that rely on implicit modeling or non-end-to-end pipelines, we redefine the core interaction mechanism in ICL as an explicit retrieval process, termed E-ICL, benefiting from the emergence of vision foundation models (VFMs). E-ICL captures dense correspondences between queries and prompts at minimal learning cost and leverages them to dynamically weight multi-class prompt masks. Built upon E-ICL, we propose EICSeg, the first end-to-end ICL framework that integrates complementary VFMs for universal medical image segmentation. Specifically, we introduce a lightweight SD-Adapter to bridge the distinct functionalities of the VFMs, enabling more accurate segmentation predictions. To fully exploit the potential of EICSeg, we further design a scalable self-prompt training strategy and an adaptive token-to-image prompt selection mechanism, facilitating both efficient training and inference. EICSeg is trained on 47 datasets covering diverse modalities and segmentation targets. Experiments on nine unseen datasets demonstrate its strong few-shot generalization ability, achieving an average Dice score of 74.0%, outperforming existing in-context and few-shot methods by 4.5%, and reducing the gap to task-specific models to 10.8%. Even with a single prompt, EICSeg achieves a competitive average Dice score of 60.1%. Notably, it performs automatic segmentation without manual prompt engineering, delivering results comparable to interactive models while requiring minimal labeled data. Source code will be available at https://github.com/ zerone-fg/EICSeg.

摘要

用于医学图像分割的深度学习模型常常难以应对特定任务的特征,限制了它们对具有新解剖结构、标签或模态的未见任务的泛化能力。重新训练或微调这些模型需要大量的人力和计算资源。为了解决这个问题,上下文学习(ICL)已成为一种有前景的范式,通过以作为提示提供的示例图像-掩码对为条件来实现查询图像分割。与以往依赖隐式建模或非端到端管道的方法不同,我们将ICL中的核心交互机制重新定义为一个显式检索过程,称为E-ICL,受益于视觉基础模型(VFM)的出现。E-ICL以最小的学习成本捕捉查询与提示之间的密集对应关系,并利用它们动态加权多类提示掩码。基于E-ICL,我们提出了EICSeg,这是第一个用于通用医学图像分割的集成互补VFM的端到端ICL框架。具体而言,我们引入了一个轻量级的SD-适配器来桥接VFM的不同功能,从而实现更准确的分割预测。为了充分发挥EICSeg的潜力,我们进一步设计了一种可扩展的自提示训练策略和一种自适应令牌到图像的提示选择机制,以促进高效的训练和推理。EICSeg在涵盖多种模态和分割目标的47个数据集上进行训练。在九个未见数据集上的实验证明了其强大的少样本泛化能力,平均Dice分数达到74.0%,比现有的上下文学习和少样本方法高出4.5%,并将与特定任务模型的差距缩小到10.8%。即使只有一个提示,EICSeg也能达到具有竞争力的平均Dice分数60.1%。值得注意的是,它无需手动提示工程即可进行自动分割,在需要最少标记数据的情况下提供与交互式模型相当的结果。源代码将在https://github.com/ zerone-fg/EICSeg上提供。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验