Ferris Elliott, Gonzalez Murcia Josue D, Rodriguez Adriana Cristina, Steinwand Susan, Stacher Hörndli Cornelia, Traenkner Dimitri, Maldonado-Catala Pablo J, Gregg Christopher
Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
Science. 2025 Jul 31;389(6759):494-500. doi: 10.1126/science.adp4025.
Extreme metabolic adaptations can elucidate genetic programs that govern mammalian metabolism. Here, we used convergent evolutionary changes in hibernating lineages to define conserved cis-regulatory elements (CREs) and metabolic programs. We characterized mouse hypothalamus gene expression and chromatin dynamics across fed, fasted, and refed states and then used comparative genomics of hibernating versus nonhibernating lineages to identify cis elements with convergent changes in hibernators. Multi-omics approaches pinpointed CREs, hub genes, regulatory programs, and cell types underlying lineage divergence. Hibernators accumulated loss-of-function effects for CREs regulating hypothalamic responses, and the refeeding period after fasting served as a key phase for molecular processes with convergent evolutionary changes. This work provides a genetic framework for harnessing hibernator adaptations to understand human metabolic control.
极端的代谢适应能够阐明调控哺乳动物新陈代谢的基因程序。在此,我们利用冬眠谱系中的趋同进化变化来定义保守的顺式调控元件(CREs)和代谢程序。我们对小鼠下丘脑在进食、禁食和再进食状态下的基因表达及染色质动态变化进行了表征,然后通过冬眠与非冬眠谱系的比较基因组学来识别冬眠动物中具有趋同变化的顺式元件。多组学方法确定了谱系分化背后的CREs、枢纽基因、调控程序和细胞类型。冬眠动物积累了调控下丘脑反应的CREs的功能丧失效应,禁食后的再进食期是具有趋同进化变化的分子过程的关键阶段。这项工作为利用冬眠动物的适应性来理解人类代谢控制提供了一个遗传框架。