Lafuma Fabien, Renvoisé Élodie, Clavel Julien, Corfe Ian J, Escarguel Gilles
Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.
Institut de Biologie de l'École Normale Supérieure (IBENS), UMR CNRS 8197, INSERM U1024, École Normale Supérieure, 46 rue d'Ulm, Paris F-75005, France.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2505624122. doi: 10.1073/pnas.2505624122. Epub 2025 Jul 31.
Morphological change occurs over macroevolutionary timescales under the action of natural selection and genetic drift combined with developmental processes shaping organogenesis. Although determining their relative weight is made difficult by discrepancies between paleontological and neontological data, mammalian tooth morphology may bridge the gap between fossil record and laboratory observations. Fossils indicate that mammals have frequently diversified after evolving molars bearing more cusps, while developmental biology shows these emerge through the iterative signaling of enamel knots. However, this theoretical evo-devo model of mammalian tooth evolution has not been tested with empirical data from both fossils and laboratory experiments. In doing so, we identify a shared developmental basis for the convergent, ratcheted evolution of increasingly complex molars in arvicoline rodents (voles, lemmings, muskrats). Longer, narrower molars lead to more cusps throughout development and deep time, suggesting that tooth development directed morphological evolution. Both the arvicoline fossil record and vole tooth development show slower transitions toward the highest cusp counts. This pattern suggests that the developmental processes fueling the evolution of increasingly complex molars may also limit the potential for further complexity increases. Integrating paleontological and developmental data shows that long-term evolutionary trends can be accurately and mostly explained by the simple tinkering of developmental pathways.
在自然选择和遗传漂变的作用下,形态变化在宏观进化时间尺度上发生,并与塑造器官发生的发育过程相结合。尽管古生物学和现代生物学数据之间的差异使得确定它们的相对权重变得困难,但哺乳动物的牙齿形态可能弥合化石记录与实验室观察之间的差距。化石表明,哺乳动物在进化出具有更多尖的臼齿后经常发生多样化,而发育生物学表明这些尖是通过釉结的迭代信号出现的。然而,这种哺乳动物牙齿进化的理论进化发育模型尚未通过化石和实验室实验的经验数据进行检验。通过这样做,我们确定了田鼠亚科啮齿动物(田鼠、旅鼠、麝鼠)中越来越复杂的臼齿趋同、棘轮进化的共同发育基础。在整个发育过程和漫长的时间里,更长、更窄的臼齿会导致更多的尖,这表明牙齿发育引导了形态进化。田鼠亚科的化石记录和田鼠牙齿发育都显示向最高尖数的转变较慢。这种模式表明,推动越来越复杂的臼齿进化的发育过程也可能限制了进一步增加复杂性的潜力。整合古生物学和发育数据表明,长期进化趋势可以通过发育途径的简单调整得到准确且主要的解释。
Proc Natl Acad Sci U S A. 2025-8-5
2025-1
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2022-2-11
Biol Sex Differ. 2025-7-1
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2017-2-23
Cochrane Database Syst Rev. 2008-7-16
Trends Ecol Evol. 2024-8
Proc Natl Acad Sci U S A. 2023-6-20
Nat Ecol Evol. 2022-11
Nat Commun. 2021-10-14
Nat Ecol Evol. 2021-9
Proc Natl Acad Sci U S A. 2021-6-8
Elife. 2020-2-12