Suppr超能文献

六百万年的田鼠牙齿进化受牙齿发育影响。

Six million years of vole dental evolution shaped by tooth development.

作者信息

Lafuma Fabien, Renvoisé Élodie, Clavel Julien, Corfe Ian J, Escarguel Gilles

机构信息

Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.

Institut de Biologie de l'École Normale Supérieure (IBENS), UMR CNRS 8197, INSERM U1024, École Normale Supérieure, 46 rue d'Ulm, Paris F-75005, France.

出版信息

Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2505624122. doi: 10.1073/pnas.2505624122. Epub 2025 Jul 31.

Abstract

Morphological change occurs over macroevolutionary timescales under the action of natural selection and genetic drift combined with developmental processes shaping organogenesis. Although determining their relative weight is made difficult by discrepancies between paleontological and neontological data, mammalian tooth morphology may bridge the gap between fossil record and laboratory observations. Fossils indicate that mammals have frequently diversified after evolving molars bearing more cusps, while developmental biology shows these emerge through the iterative signaling of enamel knots. However, this theoretical evo-devo model of mammalian tooth evolution has not been tested with empirical data from both fossils and laboratory experiments. In doing so, we identify a shared developmental basis for the convergent, ratcheted evolution of increasingly complex molars in arvicoline rodents (voles, lemmings, muskrats). Longer, narrower molars lead to more cusps throughout development and deep time, suggesting that tooth development directed morphological evolution. Both the arvicoline fossil record and vole tooth development show slower transitions toward the highest cusp counts. This pattern suggests that the developmental processes fueling the evolution of increasingly complex molars may also limit the potential for further complexity increases. Integrating paleontological and developmental data shows that long-term evolutionary trends can be accurately and mostly explained by the simple tinkering of developmental pathways.

摘要

在自然选择和遗传漂变的作用下,形态变化在宏观进化时间尺度上发生,并与塑造器官发生的发育过程相结合。尽管古生物学和现代生物学数据之间的差异使得确定它们的相对权重变得困难,但哺乳动物的牙齿形态可能弥合化石记录与实验室观察之间的差距。化石表明,哺乳动物在进化出具有更多尖的臼齿后经常发生多样化,而发育生物学表明这些尖是通过釉结的迭代信号出现的。然而,这种哺乳动物牙齿进化的理论进化发育模型尚未通过化石和实验室实验的经验数据进行检验。通过这样做,我们确定了田鼠亚科啮齿动物(田鼠、旅鼠、麝鼠)中越来越复杂的臼齿趋同、棘轮进化的共同发育基础。在整个发育过程和漫长的时间里,更长、更窄的臼齿会导致更多的尖,这表明牙齿发育引导了形态进化。田鼠亚科的化石记录和田鼠牙齿发育都显示向最高尖数的转变较慢。这种模式表明,推动越来越复杂的臼齿进化的发育过程也可能限制了进一步增加复杂性的潜力。整合古生物学和发育数据表明,长期进化趋势可以通过发育途径的简单调整得到准确且主要的解释。

相似文献

1
Six million years of vole dental evolution shaped by tooth development.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2505624122. doi: 10.1073/pnas.2505624122. Epub 2025 Jul 31.
5
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
6
Sealants for preventing dental caries in primary teeth.
Cochrane Database Syst Rev. 2022 Feb 11;2(2):CD012981. doi: 10.1002/14651858.CD012981.pub2.
7
A cross-species analysis of neuroanatomical covariance sex differences in humans and mice.
Biol Sex Differ. 2025 Jul 1;16(1):47. doi: 10.1186/s13293-025-00728-1.
8
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
9
Adhesives for bonded molar tubes during fixed brace treatment.
Cochrane Database Syst Rev. 2017 Feb 23;2(2):CD008236. doi: 10.1002/14651858.CD008236.pub3.
10
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.

本文引用的文献

1
On the multiscale dynamics of punctuated evolution.
Trends Ecol Evol. 2024 Aug;39(8):734-744. doi: 10.1016/j.tree.2024.05.003. Epub 2024 May 31.
2
Rules of teeth development align microevolution with macroevolution in extant and extinct primates.
Nat Ecol Evol. 2023 Oct;7(10):1729-1739. doi: 10.1038/s41559-023-02167-w. Epub 2023 Aug 31.
3
Fluctuating climate and dietary innovation drove ratcheted evolution of proboscidean dental traits.
Nat Ecol Evol. 2023 Sep;7(9):1490-1502. doi: 10.1038/s41559-023-02151-4. Epub 2023 Aug 14.
4
The developmental basis for scaling of mammalian tooth size.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2300374120. doi: 10.1073/pnas.2300374120. Epub 2023 Jun 12.
5
The structure of genotype-phenotype maps makes fitness landscapes navigable.
Nat Ecol Evol. 2022 Nov;6(11):1742-1752. doi: 10.1038/s41559-022-01867-z. Epub 2022 Sep 29.
6
Multiple evolutionary origins and losses of tooth complexity in squamates.
Nat Commun. 2021 Oct 14;12(1):6001. doi: 10.1038/s41467-021-26285-w.
7
The rise and fall of proboscidean ecological diversity.
Nat Ecol Evol. 2021 Sep;5(9):1266-1272. doi: 10.1038/s41559-021-01498-w. Epub 2021 Jul 1.
8
Developmental influence on evolutionary rates and the origin of placental mammal tooth complexity.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2019294118.
9
Developmental variability channels mouse molar evolution.
Elife. 2020 Feb 12;9:e50103. doi: 10.7554/eLife.50103.
10
Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation.
PLoS Biol. 2019 Dec 4;17(12):e3000494. doi: 10.1371/journal.pbio.3000494. eCollection 2019 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验