文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

哺乳动物牙齿大小比例变化的发育基础。

The developmental basis for scaling of mammalian tooth size.

机构信息

Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland.

Department of Orofacial Sciences, University of California, San Francisco, CA 94143.

出版信息

Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2300374120. doi: 10.1073/pnas.2300374120. Epub 2023 Jun 12.


DOI:10.1073/pnas.2300374120
PMID:37307487
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10288632/
Abstract

When evolution leads to differences in body size, organs generally scale along. A well-known example of the tight relationship between organ and body size is the scaling of mammalian molar teeth. To investigate how teeth scale during development and evolution, we compared molar development from initiation through final size in the mouse and the rat. Whereas the linear dimensions of the rat molars are twice that of the mouse molars, their shapes are largely the same. Here, we focus on the first lower molars that are considered the most reliable dental proxy for size-related patterns due to their low within-species variability. We found that scaling of the molars starts early, and that the rat molar is patterned equally as fast but in a larger size than the mouse molar. Using transcriptomics, we discovered that a known regulator of body size, insulin-like growth factor 1 (), is more highly expressed in the rat molars compared to the mouse molars. Ex vivo and in vivo mouse models demonstrated that modulation of the IGF pathway reproduces several aspects of the observed scaling process. Furthermore, analysis of IGF1-treated mouse molars and computational modeling indicate that IGF signaling scales teeth by simultaneously enhancing growth and by inhibiting the cusp-patterning program, thereby providing a relatively simple mechanism for scaling teeth during development and evolution. Finally, comparative data from shrews to elephants suggest that this scaling mechanism regulates the minimum tooth size possible, as well as the patterning potential of large teeth.

摘要

当进化导致身体大小的差异时,器官通常会按比例缩放。器官和身体大小之间紧密关系的一个著名例子是哺乳动物磨牙的缩放比例。为了研究牙齿在发育和进化过程中的缩放方式,我们比较了老鼠和老鼠磨牙从起始到最终大小的发育情况。虽然老鼠磨牙的线性尺寸是老鼠磨牙的两倍,但它们的形状基本相同。在这里,我们专注于第一个下磨牙,由于其在物种内的变异性低,因此被认为是与大小相关模式的最可靠牙齿替代物。我们发现,磨牙的缩放比例很早就开始了,而且老鼠磨牙的模式形成速度与老鼠磨牙一样快,但尺寸更大。通过转录组学,我们发现,一种已知的调节身体大小的胰岛素样生长因子 1(IGF1)在老鼠磨牙中的表达水平明显高于老鼠磨牙。离体和体内老鼠模型表明,IGF 途径的调节可以再现观察到的缩放过程的几个方面。此外,对 IGF1 处理的老鼠磨牙的分析和计算模型表明,IGF 信号通过同时增强生长和抑制尖峰模式形成程序来缩放牙齿,从而为发育和进化过程中的牙齿缩放提供了相对简单的机制。最后,来自鼩鼱到大象的比较数据表明,这种缩放机制调节了最小可能的牙齿尺寸以及大牙齿的模式形成潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/74bde0bce00b/pnas.2300374120fig07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/3ae8bada55d4/pnas.2300374120fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/327598b53f9a/pnas.2300374120fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/e4592b8c8afe/pnas.2300374120fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/a004b9c37416/pnas.2300374120fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/99e8a45170a5/pnas.2300374120fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/5eae0139fd6b/pnas.2300374120fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/74bde0bce00b/pnas.2300374120fig07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/3ae8bada55d4/pnas.2300374120fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/327598b53f9a/pnas.2300374120fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/e4592b8c8afe/pnas.2300374120fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/a004b9c37416/pnas.2300374120fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/99e8a45170a5/pnas.2300374120fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/5eae0139fd6b/pnas.2300374120fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10288632/74bde0bce00b/pnas.2300374120fig07.jpg

相似文献

[1]
The developmental basis for scaling of mammalian tooth size.

Proc Natl Acad Sci U S A. 2023-6-20

[2]
Developmental process of the modern house shrew's molars: implications for the evolution of the tribosphenic molar in Mesozoic mammals.

Evolution. 2024-2-29

[3]
Developmental variability channels mouse molar evolution.

Elife. 2020-2-12

[4]
Variation in the molars of the living African elephant and a critical revision of the fossil proboscidea of Southern Africa.

Am J Sci. 1947-8

[5]
Variation in enamel thickness and cusp area within human maxillary molars and its bearing on scaling techniques used for studies of enamel thickness between species.

Arch Oral Biol. 1994-9

[6]
Evolution and development of the mammalian multicuspid teeth.

J Oral Biosci. 2022-6

[7]
Vole genomics links determinate and indeterminate growth of teeth.

bioRxiv. 2024-6-22

[8]
Predicting evolutionary patterns of mammalian teeth from development.

Nature. 2007-9-27

[9]
Developmental toxicity of dioxin to mouse embryonic teeth in vitro: arrest of tooth morphogenesis involves stimulation of apoptotic program in the dental epithelium.

Toxicol Appl Pharmacol. 2004-1-1

[10]
Mechanical constraint from growing jaw facilitates mammalian dental diversity.

Proc Natl Acad Sci U S A. 2017-8-14

引用本文的文献

[1]
Mechanically Induced Pulpitis: A Rat Model That Preserves Animal Well-Being.

Biomedicines. 2025-8-7

[2]
Six million years of vole dental evolution shaped by tooth development.

Proc Natl Acad Sci U S A. 2025-8-5

[3]
Developmentally cascading structures do not lose evolutionary potential, but compound developmental instability in rat molars.

bioRxiv. 2025-1-15

[4]
Genetic Correlations Among Dental, Mandibular, and Postcranial Dimensions in Rhesus Macaques (Macaca mulatta).

Am J Biol Anthropol. 2025-1

[5]
Comparative transcriptomics in serial organs uncovers early and pan-organ developmental changes associated with organ-specific morphological adaptation.

Nat Commun. 2025-1-17

[6]
Bank vole genomics links determinate and indeterminate growth of teeth.

BMC Genomics. 2024-10-30

[7]
Vole genomics links determinate and indeterminate growth of teeth.

bioRxiv. 2024-6-22

本文引用的文献

[1]
Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis.

Nat Commun. 2022-8-16

[2]
An epithelial signalling centre in sharks supports homology of tooth morphogenesis in vertebrates.

Elife. 2022-5-10

[3]
Teeth out of proportion: Smaller horse and cattle breeds have comparatively larger teeth.

J Exp Zool B Mol Dev Evol. 2022-12

[4]
PANTHER: Making genome-scale phylogenetics accessible to all.

Protein Sci. 2022-1

[5]
Multiple evolutionary origins and losses of tooth complexity in squamates.

Nat Commun. 2021-10-14

[6]
Forward and feedback control mechanisms of developmental tissue growth.

Cells Dev. 2021-12

[7]
Developmental influence on evolutionary rates and the origin of placental mammal tooth complexity.

Proc Natl Acad Sci U S A. 2021-6-8

[8]
The Role of GH/IGF Axis in Dento-Alveolar Complex from Development to Aging and Therapeutics: A Narrative Review.

Cells. 2021-5-12

[9]
Insulin-like growth factors: Ligands, binding proteins, and receptors.

Mol Metab. 2021-10

[10]
The initiation knot is a signaling center required for molar tooth development.

Development. 2021-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索