Suppr超能文献

基于车联网数据考虑纵向和横向危险驾驶行为的交叉口碰撞分析:一种空间机器学习方法。

Intersection crash analysis considering longitudinal and lateral risky driving behavior from connected vehicle data: A spatial machine learning approach.

作者信息

Han Lei, Abdel-Aty Mohamed

机构信息

Department of Civil, Environmental & Construction Engineering, University of Central Florida, Orlando, FL 32816, United States.

出版信息

Accid Anal Prev. 2025 Sep;220:108180. doi: 10.1016/j.aap.2025.108180. Epub 2025 Jul 30.

Abstract

Existing intersection safety analysis studies have primarily focused on macro-level static infrastructure and highly aggregated traffic features. The emergence of Connected Vehicle (CV) has enabled researchers to extract micro-level driving behavior attributes from CVs. Although longitudinal driving behaviors (e.g., hard braking) have been studied recently, critical lateral left and right turn behaviors, which are common and pose potential conflict risk at intersections, have been largely overlooked. Meanwhile, dealing with both spatial heterogeneity and nonlinear effects between crash frequency and multitudinous driving features is another critical challenge for intersection safety analysis. To address such gaps, this study extracted driving behavior features for both longitudinal movements and lateral left and right turns to comprehensively capture driving dynamics at intersections. A novel spatial ML framework was proposed to integrate nonlinear ML models (e.g., LightGBM) with geographically weighted regression: Besides a global ML model training on all samples to fit average estimations, distinct local ML models are trained for each spatial sample with its neighbors to capture localized spatial heterogeneity. Empirical experiments using CV data at a Florida county show that the inclusion of lateral turning behavior (e.g., hard left/right turns) leads to improved accuracy of intersection crash frequency prediction. Compared to traditional Rrandom Forest, XGBoost, LightGBM, and Multilayer Perceptron models, the spatial ML integrating LightGBM demonstrates significant improvements of 5.8%, 6.3%, and 5.6% in RMSE, MAE, and R, respectively. The results reveal the nonlinear impact of driving features and their spatial heterogeneity: In downtown, hard braking events primarily influence the risk of rear-end (RE) crashes. Drivers' acceleration also is more likely to lead to RE crashes in urban areas. While hard left turns show greater influence of sideswipe and left turn crashes at suburban intersections.

摘要

现有的交叉口安全分析研究主要集中在宏观层面的静态基础设施和高度聚合的交通特征上。联网车辆(CV)的出现使研究人员能够从CV中提取微观层面的驾驶行为属性。尽管纵向驾驶行为(如急刹车)最近已得到研究,但关键的左右转弯行为,这种行为在交叉口很常见且存在潜在冲突风险,却在很大程度上被忽视了。同时,处理碰撞频率与众多驾驶特征之间的空间异质性和非线性效应是交叉口安全分析的另一个关键挑战。为了弥补这些差距,本研究提取了纵向运动以及左右转弯的驾驶行为特征,以全面捕捉交叉口的驾驶动态。提出了一种新颖的空间机器学习框架,将非线性机器学习模型(如LightGBM)与地理加权回归相结合:除了在所有样本上训练全局机器学习模型以拟合平均估计值外,还为每个空间样本及其邻域训练不同的局部机器学习模型,以捕捉局部空间异质性。使用佛罗里达州一个县的CV数据进行的实证实验表明,纳入横向转弯行为(如急左/右转弯)可提高交叉口碰撞频率预测的准确性。与传统的随机森林、XGBoost、LightGBM和多层感知器模型相比,集成LightGBM的空间机器学习在均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R)方面分别显著提高了5.8%、6.3%和5.6%。结果揭示了驾驶特征的非线性影响及其空间异质性:在市中心,急刹车事件主要影响追尾(RE)碰撞的风险。在城市地区,驾驶员的加速也更有可能导致RE碰撞。而在郊区交叉口,急左转弯对擦碰和左转弯碰撞的影响更大。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验