Elia Anna, Tirosh Omer, Dinstag Gal, Gugel Leon, Kinar Yaron, Gottlieb Tzivia, Pikarsky Eli, Aharonov Ranit, Arnon Johnathan, Popovtzer Aron
Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel.
Pangea Biomed Ltd, Tel-Aviv, Israel.
Oral Oncol. 2025 Jul 30;168:107536. doi: 10.1016/j.oraloncology.2025.107536.
INTRODUCTION: Immune checkpoint inhibitors (ICI) prolong survival in advanced head and neck squamous cell carcinoma (HNSCC), yet response remains widely varied, necessitating more accurate and applicable biomarkers. We present a retrospective analysis of ENLIGHT-DP, a novel transcriptome-based biomarker applied directly on histopathology slides, in HNSCC patients treated with first-line programmed death (PD)-1 inhibitors. METHODS: We retrospectively scanned high-resolution hematoxylin and eosin (H&E) slides from pre-treatment tumor-tissue samples of advanced HNSCC treated with first-line ICI and applied our ENLIGHT-DP pipeline to generate an individual prediction score. ENLIGHT-DP is composed of two steps: (i) predict individual mRNA expression directly from H&E scanned slides using DeepPT, a digital-pathology based algorithm. (ii) Use these values as input to ENLIGHT, a transcriptome-based platform that predicts response to ICI and targeted therapies. We then unblinded the clinical outcomes and evaluated the predictive value of ENLIGHT-DP in comparison to combined positive score (CPS). RESULTS: We evaluated 25 patients with advanced HNSCC treated with first-line PD-1 inhibitors as monotherapy (15/25) or in combination with chemotherapy (10/25). In patients treated with monotherapy, ENLIGHT-DP predicts response to ICI with ROC AUC of 0.74 while CPS is not predictive. Utilizing a predetermined binary cutoff (established on independent cohorts), ENLIGHT-DP achieves 75% positive predictive value (PPV), which is superior to CPS. ENLIGHT-DP was also predictive of response to treatment in the entire patient cohort. CONCLUSION: ENLIGHT-DP accurately predicts response to PD-1 inhibitors treatment in HNSCC, especially in patients receiving ICI monotherapy and relying solely on easily accessible H&E scanned slides.
引言:免疫检查点抑制剂(ICI)可延长晚期头颈部鳞状细胞癌(HNSCC)患者的生存期,但疗效差异仍然很大,因此需要更准确且适用的生物标志物。我们对ENLIGHT-DP进行了一项回顾性分析,ENLIGHT-DP是一种直接应用于组织病理学切片的新型基于转录组的生物标志物,用于接受一线程序性死亡(PD)-1抑制剂治疗的HNSCC患者。 方法:我们回顾性扫描了接受一线ICI治疗的晚期HNSCC患者治疗前肿瘤组织样本的高分辨率苏木精和伊红(H&E)切片,并应用我们的ENLIGHT-DP流程生成个体预测评分。ENLIGHT-DP由两个步骤组成:(i)使用基于数字病理学的算法DeepPT直接从H&E扫描切片预测个体mRNA表达。(ii)将这些值用作ENLIGHT的输入,ENLIGHT是一个基于转录组的平台,可预测对ICI和靶向治疗的反应。然后我们揭晓临床结果,并与联合阳性评分(CPS)比较评估ENLIGHT-DP的预测价值。 结果:我们评估了25例接受一线PD-1抑制剂单药治疗(15/25)或联合化疗(10/25)的晚期HNSCC患者。在接受单药治疗的患者中,ENLIGHT-DP预测ICI疗效的ROC曲线下面积(AUC)为0.74,而CPS无预测性。利用预先确定的二元临界值(在独立队列中确定),ENLIGHT-DP的阳性预测值(PPV)达到75%,优于CPS。ENLIGHT-DP在整个患者队列中也可预测治疗反应。 结论:ENLIGHT-DP可准确预测HNSCC患者对PD-1抑制剂治疗的反应,尤其是在接受ICI单药治疗且仅依赖易于获取的H&E扫描切片的患者中。