Wei Li, Dao Anyi, Yuan Guotao, Zhang Pingyu, Huang Huaiyi
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong 518107, P. R. China.
College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong 518060, P. R. China.
Acc Chem Res. 2025 Jul 31. doi: 10.1021/acs.accounts.5c00455.
ConspectusPhotodynamic therapy (PDT), which uses a photosensitizer (PS) to produce reactive oxygen species (ROS), has attracted great attention for cancer therapy. However, the hypoxic microenvironment within solid tumors strongly inhibits the PDT efficiency. Therefore, developing novel phototherapeutic strategies is urgently needed. In living cells, the reduced form of nicotinamide adenine dinucleotide (NADH) and its phosphorylated counterpart NADPH are essential reducing coenzymes (E = -0.32 V) for more than 400 metabolic processes, including redox balance, hypoxia modulation, respiration, and biosynthesis. In this regard, in-cell NADH/NADPH depletion represents a promising mechanism of action (MoA) for cancer treatment. Under hypoxia, cancer cells use NADH to release the ROS signal via the mitochondrial electron transport chain, thereby activating hypoxia-inducible factor-1α to support cell survival. Based on this, we constructed mitochondria-targeting Ir(III) complex , which exhibited a high excited-state redox potential (+1.22 V). Under 463 nm light irradiation, induced in-cell NADH photocatalysis via a photoinduced single electron transfer mechanism with a high NADH turnover frequency (TOF = 100 h). Though exhibited similar photocatalytic anticancer activity under normoxia and hypoxia, it suffered from a low visible light absorption ability. Thus, we extended the conjugation system of the ligand and designed homodinuclear Ir(III) complex , which extended the light absorption and increased the NADH photocatalysis activity (TOF = 449 h). Moreover, to improve the visible light molar extinction coefficient of Ir(III) complexes, we enhanced the electron-pushing effect of the ligand and tuned the ES reactivity of . As a result, showed a strong 465 nm light absorption efficiency with the NADH TOF reaching 1357 h, with strong photocytotoxicity toward A431 cells (IC = 3 nM). Moreover, we also designed heterodinuclear complex for synergistic therapy by covalently linking with a photoactivated Pt(IV) complex. Upon light irradiation, exhibited photocatalytic therapy and photoactivated chemotherapeutic activity. Furthermore, to address the short light absorption wavelength issue of Ir(III) complexes, we designed a series of Ru(II) complexes (). Through activation of the ligand-centered charge transfer process, demonstrated 635 nm red-light-triggered NADPH photocatalysis and strong anticancer activity against cisplatin-, 5-fluorouracil-, and paclitaxel-resistant cancer cell lines. Recently, we introduced electron donor-acceptor-donor (D-A-D) motifs to promote the electron transfer process and synthesized a series of homodinuclear Ru(II) complexes. exhibited a strong near-infrared (NIR) light absorption property (ε = 61063 M·cm) and 700 nm NIR-light-triggered photocatalytic anticancer activity. Based on the above findings, we demonstrated that in-cell NADH/NADPH photocatalysis has the potential to address the hypoxia and drug resistance limitations of conventional therapy. We hope that this Account will inspire the design of innovative agents for efficient anticancer phototherapy.
综述
光动力疗法(PDT)利用光敏剂(PS)产生活性氧(ROS),在癌症治疗中备受关注。然而,实体瘤内的缺氧微环境强烈抑制了PDT的效率。因此,迫切需要开发新的光疗策略。在活细胞中,烟酰胺腺嘌呤二核苷酸(NADH)的还原形式及其磷酸化对应物NADPH是400多种代谢过程中必不可少的还原辅酶(E = -0.32 V),包括氧化还原平衡、缺氧调节、呼吸和生物合成。在这方面,细胞内NADH/NADPH消耗代表了一种有前景的癌症治疗作用机制(MoA)。在缺氧条件下,癌细胞利用NADH通过线粒体电子传递链释放ROS信号,从而激活缺氧诱导因子-1α以支持细胞存活。基于此,我们构建了线粒体靶向的Ir(III)配合物,其具有高激发态氧化还原电位(+1.22 V)。在463 nm光照射下,通过光诱导单电子转移机制诱导细胞内NADH光催化,具有高NADH周转频率(TOF = 100 h)。尽管在常氧和缺氧条件下表现出相似的光催化抗癌活性,但它的可见光吸收能力较低。因此,我们扩展了配体的共轭体系,设计了同双核Ir(III)配合物,其扩展了光吸收并提高了NADH光催化活性(TOF = 449 h)。此外,为了提高Ir(III)配合物的可见光摩尔消光系数,我们增强了配体的推电子效应并调节了其ES反应性。结果,表现出强烈的465 nm光吸收效率,NADH TOF达到1357 h,对A431细胞具有强光细胞毒性(IC = 3 nM)。此外,我们还通过将与光活化的Pt(IV)配合物共价连接来设计用于协同治疗的异双核配合物。光照后,表现出光催化治疗和光活化化疗活性。此外,为了解决Ir(III)配合物光吸收波长较短的问题,我们设计了一系列Ru(II)配合物()。通过激活以配体为中心的电荷转移过程,证明了635 nm红光触发的NADPH光催化以及对顺铂、5-氟尿嘧啶和紫杉醇耐药癌细胞系的强抗癌活性。最近,我们引入电子供体-受体-供体(D-A-D)基序以促进电子转移过程,并合成了一系列同双核Ru(II)配合物。表现出强烈的近红外(NIR)光吸收特性(ε = 61063 M·cm)和700 nm NIR光触发的光催化抗癌活性。基于上述发现,我们证明细胞内NADH/NADPH光催化有潜力解决传统疗法的缺氧和耐药性限制。我们希望这篇综述能激发设计高效抗癌光疗创新药物的灵感。