Suppr超能文献

利用血清炎症指标预测可切除食管鳞状细胞癌对新辅助抗程序性死亡蛋白1联合化疗的病理反应

Predicting pathological response of resectable esophageal squamous cell carcinoma to neoadjuvant anti-PD-1 with chemotherapy using serum inflammation indexes.

作者信息

Song Peng, Yao Zhiyuan, Song Shuai, Wen Zengjin, Sun Xiao, Li Changlei, Yang Huansong, Jiao Wenjie, Cui Yong, Chang Dong

机构信息

Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

Sci Rep. 2025 Jul 31;15(1):27914. doi: 10.1038/s41598-025-11590-x.

Abstract

BACKGROUND

Inflammatory indexes are increasingly being considered to predict treatment response in tumors. This study aimed to investigate the efficacy of serum inflammatory indexes in predicting pathological response in patients with esophageal squamous cell carcinoma (ESCC) receiving anti-PD-1 neoadjuvant immunochemotherapy (NICT).

METHODS

We retrospectively collected clinical and laboratory data from 116 ESCC patients who received NICT. We set three outcome variables: pathologic complete response (PCR), good response (GR), and response (R). We assessed between-group differences in inflammation indexes and their diagnostic efficacy. Independent diagnostic markers were filtered using least absolute shrinkage and selection operator (LASSO) logistic regression and multivariable analysis, and the corresponding nomograms for PCR and GR were constructed, respectively. Receiver operating characteristic curves (ROC) and calibration curves assessed the efficiency and accuracy of the models. Decision curve analysis (DCA) and clinical impact curves (CIC) evaluated the clinical value. Moreover, we internally validated the predictive model with a random sample of 30% of patients.

RESULTS

The prognostic nutritional index (PNI) predicted a cutoff value of 53.585 for PCR with an area under curve (AUC) value of 0.720, a cutoff value of 47.85 for GR with an AUC of 0.723, a cutoff value of 47.85 for R with an AUC of 0.629. Smoking and PNI were independent predictors of PCR, platelet-to-lymphocyte ratio (PLR) and PNI were independent predictors of GR, and PNI was an independent predictor of R. We built PNI-based nomograms to predict PCR and GR with AUC values of 0.795 and 0.763 for the training cohort and 0.907 and 0.757 for the validation cohort, respectively. The predicted and actual results of the calibration curves for both the training and validation groups showed good agreement, with Brier scores below 0.25.

CONCLUSION

High PNI value is a shared independent predictor of achieving PCR, GR, and R in ESCC patients receiving anti-PD1 NICT. PNI-based diagnostic models can be used as a practical tool to identify ideal patients for personalized clinical decisions.

摘要

背景

炎症指标在预测肿瘤治疗反应方面越来越受到重视。本研究旨在探讨血清炎症指标对接受抗程序性死亡蛋白1(PD-1)新辅助免疫化疗(NICT)的食管鳞状细胞癌(ESCC)患者病理反应的预测效能。

方法

我们回顾性收集了116例接受NICT的ESCC患者的临床和实验室数据。我们设定了三个结局变量:病理完全缓解(PCR)、良好反应(GR)和反应(R)。我们评估了炎症指标的组间差异及其诊断效能。使用最小绝对收缩和选择算子(LASSO)逻辑回归和多变量分析筛选独立诊断标志物,并分别构建了PCR和GR的相应列线图。受试者工作特征曲线(ROC)和校准曲线评估了模型的效能和准确性。决策曲线分析(DCA)和临床影响曲线(CIC)评估了临床价值。此外,我们用30%的患者随机样本对预测模型进行了内部验证。

结果

预后营养指数(PNI)预测PCR的截断值为53.585,曲线下面积(AUC)值为0.720;预测GR的截断值为47.85,AUC为0.723;预测R的截断值为47.85,AUC为0.629。吸烟和PNI是PCR的独立预测因素,血小板与淋巴细胞比值(PLR)和PNI是GR的独立预测因素,PNI是R的独立预测因素。我们构建了基于PNI的列线图来预测PCR和GR,训练队列的AUC值分别为0.795和0.763,验证队列的AUC值分别为0.907和0.757。训练组和验证组校准曲线的预测结果与实际结果显示出良好的一致性,Brier评分低于0.25。

结论

高PNI值是接受抗PD-1 NICT的ESCC患者实现PCR、GR和R的共同独立预测因素。基于PNI的诊断模型可作为一种实用工具,用于识别理想患者以进行个性化临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验