Chang Ying, Shi Xiaohu, Zhao Xiaohui, Chen Zhaohuang, Ma Deyin
College of Software, Jilin University, Changchun, 130012, China.
College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
Sci Rep. 2025 Jul 31;15(1):28026. doi: 10.1038/s41598-025-11864-4.
Personalized federated learning (PFL) has garnered significant attention for its ability to address heterogeneous client data distributions while preserving data privacy. However, when local client data is limited, deep learning models often suffer from insufficient training, leading to suboptimal performance. Foundation models, such as CLIP (Contrastive Language-Image Pretraining), exhibit strong feature extraction capabilities and can alleviate this issue by fine-tuning on limited local data. Despite their potential, foundation models are rarely utilized in federated learning scenarios, and challenges related to integrating new clients remain largely unresolved. To address these challenges, we propose the Dual Prompt Personalized Federated Learning (DPFL) framework, which introduces dual prompts and an adaptive aggregation strategy. DPFL combines global task awareness with local data-driven insights, enabling local models to achieve effective generalization while remaining adaptable to specific data distributions. Moreover, DPFL introduces a global model that enables prediction on new data sources and seamlessly integrates newly added clients without requiring retraining. Experimental results in highly heterogeneous environments validate the effectiveness of DPFL's prompt design and aggregation strategy, underscoring the advantages of prediction on novel data sources and demonstrating the seamless integration of new clients into the federated learning framework.
个性化联邦学习(PFL)因其在保护数据隐私的同时能够处理异构客户端数据分布的能力而备受关注。然而,当本地客户端数据有限时,深度学习模型往往会因训练不足而性能欠佳。基础模型,如CLIP(对比语言-图像预训练模型),具有强大的特征提取能力,可以通过在有限的本地数据上进行微调来缓解这一问题。尽管基础模型具有潜力,但在联邦学习场景中却很少被使用,并且与整合新客户端相关的挑战在很大程度上仍未得到解决。为应对这些挑战,我们提出了双提示个性化联邦学习(DPFL)框架,该框架引入了双提示和自适应聚合策略。DPFL将全局任务感知与本地数据驱动的见解相结合,使本地模型能够在有效泛化的同时适应特定的数据分布。此外,DPFL引入了一个全局模型,该模型能够对新数据源进行预测,并能无缝集成新添加的客户端,而无需重新训练。在高度异构环境中的实验结果验证了DPFL提示设计和聚合策略的有效性,突出了对新数据源进行预测的优势,并展示了新客户端无缝集成到联邦学习框架中的能力。