Lin Li, Liu Yixiang, Wu Jiewei, Cheng Pujin, Cai Zhiyuan, Wong Kenneth K Y, Tang Xiaoying
IEEE Trans Med Imaging. 2025 Mar;44(3):1127-1139. doi: 10.1109/TMI.2024.3483221. Epub 2025 Mar 17.
Federated learning (FL) effectively mitigates the data silo challenge brought about by policies and privacy concerns, implicitly harnessing more data for deep model training. However, traditional centralized FL models grapple with diverse multi-center data, especially in the face of significant data heterogeneity, notably in medical contexts. In the realm of medical image segmentation, the growing imperative to curtail annotation costs has amplified the importance of weakly-supervised techniques which utilize sparse annotations such as points, scribbles, etc. A pragmatic FL paradigm shall accommodate diverse annotation formats across different sites, which research topic remains under-investigated. In such context, we propose a novel personalized FL framework with learnable prompt and aggregation (FedLPPA) to uniformly leverage heterogeneous weak supervision for medical image segmentation. In FedLPPA, a learnable universal knowledge prompt is maintained, complemented by multiple learnable personalized data distribution prompts and prompts representing the supervision sparsity. Integrated with sample features through a dual-attention mechanism, those prompts empower each local task decoder to adeptly adjust to both the local distribution and the supervision form. Concurrently, a dual-decoder strategy, predicated on prompt similarity, is introduced for enhancing the generation of pseudo-labels in weakly-supervised learning, alleviating overfitting and noise accumulation inherent to local data, while an adaptable aggregation method is employed to customize the task decoder on a parameter-wise basis. Extensive experiments on four distinct medical image segmentation tasks involving different modalities underscore the superiority of FedLPPA, with its efficacy closely parallels that of fully supervised centralized training. Our code and data will be available at https://github.com/llmir/FedLPPA.
联邦学习(FL)有效地缓解了由政策和隐私问题带来的数据孤岛挑战,隐含地利用更多数据进行深度模型训练。然而,传统的集中式FL模型在处理多样的多中心数据时面临困难,尤其是面对显著的数据异质性时,在医学领域尤为明显。在医学图像分割领域,降低标注成本的需求日益迫切,这凸显了利用点、涂鸦等稀疏标注的弱监督技术的重要性。一个实用的FL范式应能适应不同站点的多种标注格式,而这一研究主题仍未得到充分研究。在此背景下,我们提出了一种具有可学习提示和聚合功能的新型个性化FL框架(FedLPPA),以统一利用异构弱监督进行医学图像分割。在FedLPPA中,维护一个可学习的通用知识提示,并辅以多个可学习的个性化数据分布提示以及表示监督稀疏性的提示。通过双注意力机制与样本特征相结合,这些提示使每个局部任务解码器能够灵活地适应局部分布和监督形式。同时,引入了一种基于提示相似性的双解码器策略,以增强弱监督学习中伪标签的生成,减轻局部数据固有的过拟合和噪声积累,同时采用一种自适应聚合方法在参数层面上定制任务解码器。在涉及不同模态的四个不同医学图像分割任务上进行的广泛实验突出了FedLPPA的优越性,其效果与完全监督的集中式训练相近。我们的代码和数据将在https://github.com/llmir/FedLPPA上提供。