Inamori Kei-Ichiro, Inokuchi Jin-Ichi
Division of Glycopathology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
J Hum Genet. 2025 Jul 31. doi: 10.1038/s10038-025-01366-6.
Glycosphingolipids comprise a hydrophobic ceramide backbone, consisting of a long-chain base (sphingosine) and a fatty acid, conjugated with a hydrophilic oligosaccharide moiety. These amphipathic molecules are integral constituents of cellular membranes, playing pivotal roles in modulating membrane protein functionality and receptor-mediated signaling. Among glycosphingolipids, gangliosides, defined by their inclusion of sialic acid residues, are abundantly enriched in the central nervous system. Notably, four predominant species, GM1, GD1a, GD1b, and GT1b, constitute the majority of gangliosides in the mammalian brain and are indispensable for neuronal development, synaptic architecture, and signal transduction. These gangliosides are critically involved in neurogenesis, differentiation, membrane stability, and the modulation of receptor function, ion channel activity, and immunological signaling within the nervous system. The biosynthesis of these gangliosides is orchestrated by key enzymes, including GM3 synthase (ST3GAL5) and GM2/GD2 synthase (B4GALNT1) catalyzing the formation of downstream intermediates. Pathogenic variants in ST3GAL5 result in GM3 synthase deficiency (GM3SD), an autosomal recessive disorder characterized by infantile-onset epileptic encephalopathy and profound developmental regression. In contrast, biallelic mutations in B4GALNT1 cause a complex form of hereditary spastic paraplegia (SPG26), marked by progressive spasticity and intellectual impairment. ST3GAL3, another α2,3-sialyltransferase, contributes to the synthesis of GD1a and GT1b, as well as to glycoprotein sialylation. Mutations in this gene underlie neurodevelopmental disorders, including developmental and epileptic encephalopathy type 15 (DEE15). In this review, we summarize the current understanding of the molecular pathogenesis of congenital ganglioside biosynthesis disorders, integrating data from genetically engineered mouse models and affected individuals.
糖鞘脂由疏水的神经酰胺主链组成,该主链由长链碱基(鞘氨醇)和脂肪酸构成,并与亲水性寡糖部分结合。这些两亲性分子是细胞膜的重要组成部分,在调节膜蛋白功能和受体介导的信号传导中发挥关键作用。在糖鞘脂中,神经节苷脂因其含有唾液酸残基而被定义,在中枢神经系统中大量富集。值得注意的是,四种主要类型,即GM1、GD1a、GD1b和GT1b,构成了哺乳动物大脑中神经节苷脂的大部分,并且对于神经元发育、突触结构和信号转导必不可少。这些神经节苷脂在神经发生、分化、膜稳定性以及神经系统内受体功能、离子通道活性和免疫信号的调节中起着至关重要的作用。这些神经节苷脂的生物合成由关键酶精心调控,包括催化下游中间体形成的GM3合酶(ST3GAL5)和GM2/GD2合酶(B4GALNT1)。ST3GAL5中的致病变异导致GM3合酶缺乏症(GM3SD),这是一种常染色体隐性疾病,其特征为婴儿期发作的癫痫性脑病和严重的发育倒退。相比之下,B4GALNT1中的双等位基因突变会导致一种复杂形式的遗传性痉挛性截瘫(SPG26),其特征为进行性痉挛和智力障碍。另一种α2,3-唾液酸转移酶ST3GAL3有助于GD1a和GT1b的合成以及糖蛋白的唾液酸化。该基因的突变是神经发育障碍的基础,包括15型发育性和癫痫性脑病(DEE15)。在本综述中,我们总结了目前对先天性神经节苷脂生物合成障碍分子发病机制的理解,整合了来自基因工程小鼠模型和受影响个体的数据。