Suppr超能文献

结合脂质代谢和解剖特征对急性胰腺炎后糖尿病进行个体化预测。

Individualized prediction of post-acute pancreatitis diabetes mellitus by combining lipid metabolism and anatomical features.

作者信息

Tang Ling Ling, Zhang Qi, Song Shuang Yi, Liu Nian, Du Qing Lin, Zhong Shu Ting, Huang Xiao Hua

机构信息

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.

School of Medical Imaging, North Sichuan Medical College, Nanchong, China.

出版信息

Insights Imaging. 2025 Jul 31;16(1):161. doi: 10.1186/s13244-025-02039-w.

Abstract

OBJECTIVES

To investigate the lipid metabolism and anatomical risk factors of post-acute pancreatitis diabetes mellitus (PPDM) and their value in individualized prediction.

MATERIALS AND METHODS

A continuous retrospective analysis was conducted on 241 patients with acute pancreatitis (AP) treated in our hospital from January 2017 to December 2021. The type and angle of the pancreaticobiliary junction were measured on magnetic resonance cholangiopancreatography (MRCP) images, and baseline lipid metabolism indicators were collected. We evaluated the risk factors of PPDM using univariate and multivariate Cox proportional hazard analysis, established quantitative prediction models for PPDM, and evaluated the predictive value of lipid metabolism and features of the pancreaticobiliary junction.

RESULTS

Overall, 85 of 241 eligible patients (35.27%) ultimately developed PPDM. Univariate and multivariate analyses showed B-P type in pancreaticobiliary junction (p = 0.017), the angle of junction (p = 0.041), non-high-density lipoprotein (p = 0.029), alcohol index (p < 0.001), body mass index (p = 0.042), inflammatory frequency (p = 0.016), fasting blood glucose (p = 0.002), concomitant hypertension (p < 0.001) were important predictive factors for the occurrence of PPDM. The model that integrated imaging features of the pancreaticobiliary junction has a higher predictive performance than models without imaging features, with an AUC of 0.882 (95% CI, 0.836-0.930). The AUC of the combined model was 0.886 (95% CI, 0.841-0.932), and there was no statistical difference in AUC between the combined model and the pancreaticobiliary junction model (p = 0.340).

CONCLUSION

The lipid metabolism and morphological characteristics of the pancreaticobiliary junction are additional risk factors for PPDM, and the quantitative prediction model shows moderate predictive performance.

CRITICAL RELEVANCE STATEMENT

The type and angle of the pancreaticobiliary junction based on MRCP are independent predictors of PPDM, which can quantitatively predict risk in the early stage.

KEY POINTS

PPDM has an increasing incidence and poor prognosis, which requires early monitoring. Larger angles and B-P type in the pancreaticobiliary junction are risk factors for PPDM. Quantitative prediction of PPDM risk allows for early personalized prevention and treatment.

摘要

目的

探讨急性胰腺炎后糖尿病(PPDM)的脂质代谢及解剖学危险因素及其在个体化预测中的价值。

材料与方法

对2017年1月至2021年12月在我院接受治疗的241例急性胰腺炎(AP)患者进行连续回顾性分析。在磁共振胰胆管造影(MRCP)图像上测量胰胆管交界处的类型和角度,并收集基线脂质代谢指标。我们采用单因素和多因素Cox比例风险分析评估PPDM的危险因素,建立PPDM的定量预测模型,并评估脂质代谢和胰胆管交界处特征的预测价值。

结果

总体而言,241例符合条件的患者中有85例(35.27%)最终发生PPDM。单因素和多因素分析显示,胰胆管交界处的B-P型(p = 0.017)、交界处角度(p = 0.041)、非高密度脂蛋白(p = 0.029)、饮酒指数(p < 0.001)、体重指数(p = 0.042)、炎症频率(p = 0.016)、空腹血糖(p = 0.002)、合并高血压(p < 0.001)是PPDM发生的重要预测因素。整合胰胆管交界处影像特征的模型比未整合影像特征的模型具有更高的预测性能,AUC为0.882(95%CI,0.836 - 0.930)。联合模型的AUC为0.886(95%CI,0.841 - 0.932),联合模型与胰胆管交界处模型的AUC无统计学差异(p = 0.340)。

结论

胰胆管交界处的脂质代谢和形态特征是PPDM的额外危险因素,定量预测模型显示出中等的预测性能。

关键相关性声明

基于MRCP的胰胆管交界处类型和角度是PPDM的独立预测因素,可在早期对风险进行定量预测。

要点

PPDM发病率不断上升且预后不良,需要早期监测。胰胆管交界处较大角度和B-P型是PPDM的危险因素。对PPDM风险进行定量预测有助于早期个体化预防和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81bc/12314159/81b3f5f738a7/13244_2025_2039_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验