Moreira Saulo V, Radaelli Marco, Candeloro Alessandro, Binder Felix C, Mitchison Mark T
Trinity College Dublin, School of Physics, College Green, Dublin 2, D02 K8N4, Ireland.
Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, D02 YN67, Ireland.
Phys Rev E. 2025 Jun;111(6-1):064107. doi: 10.1103/PhysRevE.111.064107.
Thermodynamic (TUR) and kinetic (KUR) uncertainty relations are fundamental bounds constraining the fluctuations of current observables in classical, nonequilibrium systems. Several works have verified, however, violations of these classical bounds in open quantum systems, motivating the derivation of new quantum TURs and KURs that account for the role of quantum coherence. Here, we go one step further by deriving multidimensional KUR and TUR for multiple observables in open quantum systems undergoing Markovian dynamics. Our derivation exploits a multiparameter metrology approach, in which the Fisher information matrix plays a central role. Crucially, our bounds are tighter than previously derived quantum TURs and KURs for single observables, precisely because they incorporate correlations between multiple observables. We also find an intriguing quantum signature of correlations that is captured by the off-diagonal element of the Fisher information matrix, which vanishes for classical stochastic dynamics. By considering two examples, namely a coherently driven qubit system and the three-level maser, we demonstrate that the multidimensional quantum KUR bound can even be saturated when the observables are perfectly correlated.
热力学不确定性关系(TUR)和动力学不确定性关系(KUR)是约束经典非平衡系统中当前可观测量涨落的基本界限。然而,一些研究已经证实,在开放量子系统中这些经典界限会被违反,这促使人们推导新的量子TUR和KUR,以考虑量子相干的作用。在此,我们通过为经历马尔可夫动力学的开放量子系统中的多个可观测量推导多维KUR和TUR更进一步。我们的推导利用了多参数计量学方法,其中费希尔信息矩阵起着核心作用。至关重要的是,我们的界限比之前为单个可观测量推导的量子TUR和KUR更严格,正是因为它们纳入了多个可观测量之间的相关性。我们还发现了一种有趣的量子关联特征,它由费希尔信息矩阵的非对角元素捕获,而对于经典随机动力学,该元素为零。通过考虑两个例子,即相干驱动的量子比特系统和三能级微波激射器,我们证明当可观测量完全相关时,多维量子KUR界限甚至可以达到饱和。