Ambreen Subia, Gupta Dinesh K, Kumar Hemaunt, Sharma Archana, Arun Shiva, Kumar Santosh, Saraswat Apoorv, Mishra Arvind Kumar
Department of Applied Science and Humanities, Rajkiya Engineering College, Bijnor, Uttar Pradesh, India.
Department of Chemistry, School of Science, U.P. Rajarshi Tandon Open University, Prayagraj, Uttar Pradesh, India.
Luminescence. 2025 Aug;40(8):e70273. doi: 10.1002/bio.70273.
This review provides a comprehensive analysis of the performance of transition-metal dichalcogenides (TMDs) and their hybrid nanostructures in various sensing applications, including gas sensors, photodetectors, biosensors and wearable sensors. It focuses on categorizing the mechanisms involved, such as chemiresistive, field-effect transistor (FET), surface-enhanced Raman scattering (SERS) and piezoresistive methods, which illustrate the sensor functionalities of TMDs. The review emphasizes the importance of several properties like charge transfer processes, surface interactions and structural dynamics. The interaction between TMDs and target molecules leads to necessary modifications that influence the sensor's output signal, including defect formation, doping effects and bandgap adjustments (ranging from 1 to 2 eV). Additionally, the review investigates other critical parameters that enhance sensor performance, like the number of TMD layers, functionalization methods and various chemical and physical environments. These factors can significantly improve selectivity by up to 200% and decrease response times to just a few milliseconds. To further enhance the sensitivity, selectivity and stability of TMD-based sensors, reproducibility and other relevant parameters are also discussed in light of recent advancements. The key findings presented here provide valuable insights for researchers aiming to leverage TMDs in the development of next-generation sensor technologies, with a focus on optimizing sensitivity and selectivity.
本综述全面分析了过渡金属二硫属化物(TMDs)及其混合纳米结构在各种传感应用中的性能,包括气体传感器、光电探测器、生物传感器和可穿戴传感器。它着重对所涉及的机制进行分类,如化学电阻、场效应晶体管(FET)、表面增强拉曼散射(SERS)和压阻方法,这些机制阐释了TMDs的传感器功能。该综述强调了电荷转移过程、表面相互作用和结构动力学等几种特性的重要性。TMDs与目标分子之间的相互作用会导致必要的修饰,从而影响传感器的输出信号,包括缺陷形成、掺杂效应和带隙调整(范围为1至2电子伏特)。此外,该综述还研究了其他提高传感器性能的关键参数,如TMD层的数量、功能化方法以及各种化学和物理环境。这些因素可将选择性显著提高多达200%,并将响应时间缩短至仅几毫秒。为了进一步提高基于TMD的传感器的灵敏度、选择性和稳定性,还根据最新进展讨论了再现性和其他相关参数。此处呈现的关键发现为旨在利用TMDs开发下一代传感器技术的研究人员提供了有价值的见解,重点在于优化灵敏度和选择性。