Ippel Hans, Peijnenborgh Sem J, Hackeng Tilman M, Agten Stijn M
Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, the Netherlands.
Res Pract Thromb Haemost. 2025 Jun 27;9(5):102964. doi: 10.1016/j.rpth.2025.102964. eCollection 2025 Jul.
The small family of vitamin K-dependent proteins are characterized by posttranslational modification of specific glutamic acid residues to yield γ-carboxyglutamic acid (Gla). Gla residues give these proteins calcium ion-binding properties, which are essential for a number of coagulation factors and mineralization processes. Biophysical characteristics of Gla are, however, incomplete, hindering molecular dynamics simulations and protein structure predictions.
This study aimed to elucidate the general biophysical characteristics (p and ) of calcium binding to γ-carboxyglutamic acid in a protein environment and determine how positioning of γ-carboxyglutamic acid influences cooperative calcium binding and protein structure.
Residue-based p of Gla carboxyl groups in model peptides was individually determined by measuring H and C nuclear magnetic resonance chemical shift changes as a function of pH. In addition, residue-based values of Ca binding were determined using Ca nuclear magnetic resonance titrations. Secondary structure of peptides and proteins was assessed using circular dichroism and nuclear magnetic resonance.
Carboxylic acid groups present on Gla residues have 2 different p values of 2.62 ± 0.07 and 5.02 ± 0.05. In presence of calcium ions, p values drop to 2.54 ± 0.02 and 4.55 ± 0.04. Affinity of a single Gla residue for calcium is low (∼15 mM); 2 Gla residues show cooperativity, resulting in a 25-fold increased affinity for calcium ions (0.6 mM). Finally, cooperative calcium ion binding led to increased α-helical content in model proteins.
Vitamin K-dependent proteins present Gla residues in a different manner but benefit from cooperative calcium ion binding. Experimentally determined p and values can be used for interpretation of binding interactions or for molecular dynamics simulations of Gla domains with unknown structure.
维生素K依赖蛋白的小家族的特点是特定谷氨酸残基经翻译后修饰生成γ-羧基谷氨酸(Gla)。Gla残基赋予这些蛋白钙离子结合特性,这对许多凝血因子和矿化过程至关重要。然而,Gla的生物物理特性并不完整,这阻碍了分子动力学模拟和蛋白质结构预测。
本研究旨在阐明在蛋白质环境中钙离子与γ-羧基谷氨酸结合的一般生物物理特性(pKa和Kd),并确定γ-羧基谷氨酸的定位如何影响协同钙离子结合和蛋白质结构。
通过测量作为pH函数的氢和碳核磁共振化学位移变化,分别测定模型肽中Gla羧基的基于残基的pKa值。此外,使用钙核磁共振滴定法测定基于残基的钙离子结合Kd值。使用圆二色性和核磁共振评估肽和蛋白质的二级结构。
Gla残基上的羧酸基团有两个不同的pKa值,分别为2.62±0.07和5.02±0.05。在钙离子存在下,pKa值降至2.54±0.02和4.55±0.04。单个Gla残基对钙离子的亲和力较低(约15 mM);两个Gla残基表现出协同性,导致对钙离子的亲和力增加25倍(0.6 mM)。最后,协同钙离子结合导致模型蛋白中α-螺旋含量增加。
维生素K依赖蛋白以不同方式呈现Gla残基,但受益于协同钙离子结合。实验测定的pKa和Kd值可用于解释结合相互作用或用于对未知结构的Gla结构域进行分子动力学模拟。