文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

辅助组合和抗原多聚化塑造了针对严重急性呼吸综合征冠状病毒2受体结合域亚单位疫苗的中和抗体和T细胞反应。

Adjuvant combination and antigen multimerization shape neutralizing antibody and T cell responses to a SARS-CoV-2 RBD subunit vaccine.

作者信息

Nunes João Pedro da Silva, Silva Mariângela de Oliveira, Apostolico Juliana de Souza, Daher Isabela Pazotti, Marques Rodolfo Ferreira, Yamamoto Marcio Massao, Carvalho Alexia Adrianne Venceslau Brito, de Castro-Amarante Maria Fernanda, Durigon Edison Luiz, Wrenger Carsten, Janini Luiz Mario Ramos, de Souza Edmarcia Elisa, Andreata-Santos Robert, Maricato Juliana Terzi, Cunha-Neto Edecio, Kalil Jorge, Boscardin Silvia Beatriz, Rosa Daniela Santoro

机构信息

Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil.

Departamento de Parasitologia, Universidade de São Paulo (USP), São Paulo, Brazil.

出版信息

Front Immunol. 2025 Jul 17;16:1610422. doi: 10.3389/fimmu.2025.1610422. eCollection 2025.


DOI:10.3389/fimmu.2025.1610422
PMID:40746548
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12310705/
Abstract

INTRODUCTION: The rapid development and deployment of multiple safe and effective COVID-19 vaccines were critical cornerstones of pandemic control. However, vaccine inequity and the emergence of new variants of concern (VOCs) highlighted major gaps in the global strategy to control SARS-CoV-2 infection. Despite the use of distinct platforms, most approved vaccines utilize the Spike protein as the main antigen due to its pivotal role in virus entry, mediated by the receptor binding domain (RBD). In this context, RBD stands out as a promising antigen for a subunit vaccine candidate, as it is the main target of neutralizing antibodies, has a well-established scalable production pipeline, and has proven safety. Approaches to enhance RBD immunogenicity encompass the addition of adjuvants and antigen multimerization. METHODS: In this study, we compared the immunogenic properties of the Wuhan RBD monomer and homodimer with an RBD heterotrimer formulation composed of the Delta, Beta and Gamma variants. We also screened different adjuvants to optimize both humoral and cellular immunity. RESULTS: Our results showed that immunization with the RBD dimer and trimer, in the presence of the adjuvant AddaS03, elicited a higher humoral response and a broader neutralization profile. Additionally, RBD-trimer immunization more efficiently inhibited viral replication in the lungs of mice challenged with the ancestral Wuhan strain compared to the monomer. We further optimized our vaccine formulation by combining the adjuvants AddaS03 and Poly I:C, which demonstrated a synergistic effect, integrating the potent humoral response induced by AddaS03 with the cellular Th1 skewing capacity of Poly I:C. The AddaS03+ Poly I:C mixture induced antibodies with higher affinity and an increased frequency of RBD-specific IgG2c-producing bone marrow plasma cells, highlighting the potential of this adjuvant combination to generate long-lived memory plasma cells. Additionally, we identified sequences within the RBD that induced specific IFNγ T cell responses. Peptide 12 (393-TNVYADSFVIRGDEVRQ-409) emerged as the immunodominant CD4 T cell epitope, whereas peptides 28 (505-YQPYRVVVLSFELLHAP-521) and 29 (512-VLSFELLHAPATVCGPK-528) successfully activated CD8 T cells. CONCLUSIONS: These findings underscore that antigen multimerization and the strategic combination of adjuvants can significantly improve vaccine immunogenicity.

摘要

引言:多种安全有效的新冠疫苗的快速研发和部署是疫情防控的关键基石。然而,疫苗不平等以及新出现的值得关注的变异株(VOC)凸显了全球控制新冠病毒感染策略中的重大差距。尽管使用了不同的平台,但由于刺突蛋白在病毒进入过程中由受体结合域(RBD)介导发挥关键作用,大多数获批疫苗都将其作为主要抗原。在此背景下,RBD作为亚单位疫苗候选的一种有前景的抗原脱颖而出,因为它是中和抗体的主要靶点,拥有成熟的可扩展生产流程,且已证明具有安全性。增强RBD免疫原性的方法包括添加佐剂和抗原多聚化。 方法:在本研究中,我们比较了武汉RBD单体和同二聚体与由德尔塔、贝塔和伽马变异株组成的RBD异三聚体配方的免疫原性特性。我们还筛选了不同的佐剂以优化体液免疫和细胞免疫。 结果:我们的结果表明,在佐剂AddaS03存在的情况下,用RBD二聚体和三聚体免疫可引发更高的体液反应和更广泛的中和谱。此外,与单体相比,RBD三聚体免疫更有效地抑制了用原始武汉毒株攻击的小鼠肺部的病毒复制。我们通过将佐剂AddaS03和聚肌胞苷酸(Poly I:C)联合使用进一步优化了疫苗配方,二者显示出协同效应,将AddaS03诱导的强效体液反应与Poly I:C的细胞Th1偏向能力相结合。AddaS03 + Poly I:C混合物诱导产生具有更高亲和力的抗体以及产生RBD特异性IgG2c的骨髓浆细胞频率增加,突出了这种佐剂组合产生长寿记忆浆细胞的潜力。此外,我们确定了RBD内诱导特异性IFNγ T细胞反应的序列。肽12(393 - TNVYADSFVIRGDEVRQ - 409)成为免疫显性CD4 T细胞表位,而肽28(505 - YQPYRVVVLSFELLHAP - 521)和肽29(512 - VLSFELLHAPATVCGPK - 528)成功激活了CD8 T细胞。 结论:这些发现强调抗原多聚化和佐剂的策略性组合可显著提高疫苗免疫原性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/a53795ee3c81/fimmu-16-1610422-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/506150ec5f6a/fimmu-16-1610422-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/f1daf39d6373/fimmu-16-1610422-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/c089a1fcb80b/fimmu-16-1610422-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/83cb5378ce04/fimmu-16-1610422-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/88ec1895dfd3/fimmu-16-1610422-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/f6e1af2e01ad/fimmu-16-1610422-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/776fbda6c2d6/fimmu-16-1610422-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/a53795ee3c81/fimmu-16-1610422-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/506150ec5f6a/fimmu-16-1610422-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/f1daf39d6373/fimmu-16-1610422-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/c089a1fcb80b/fimmu-16-1610422-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/83cb5378ce04/fimmu-16-1610422-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/88ec1895dfd3/fimmu-16-1610422-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/f6e1af2e01ad/fimmu-16-1610422-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/776fbda6c2d6/fimmu-16-1610422-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f240/12310705/a53795ee3c81/fimmu-16-1610422-g008.jpg

相似文献

[1]
Adjuvant combination and antigen multimerization shape neutralizing antibody and T cell responses to a SARS-CoV-2 RBD subunit vaccine.

Front Immunol. 2025-7-17

[2]
The spike 486 site is a key immune evasion point and a determinant of the immunogenicity of the RBD-dimer mRNA vaccine against SARS-CoV-2 variants.

Virology. 2025-6-20

[3]
Biogenic silver nanoparticle as an adjuvant in an S1 subunit recombinant vaccine.

Braz J Microbiol. 2025-6

[4]
Design of SARS-CoV-2 RBD immunogens to focus immune responses toward conserved coronavirus epitopes.

J Virol. 2025-7-22

[5]
BNT162b vaccines protect rhesus macaques from SARS-CoV-2.

Nature. 2021-4

[6]
An mRNA vaccine encoding the SARS-CoV-2 Omicron XBB.1.5 receptor-binding domain protects mice from the JN.1 variant.

EBioMedicine. 2025-6-6

[7]
Moloney Murine Leukemia Virus-like Nanoparticles Pseudo-Typed with SARS-CoV-2 RBD for Vaccination Against COVID-19.

Int J Mol Sci. 2025-7-4

[8]
Limited Variation between SARS-CoV-2-Infected Individuals in Domain Specificity and Relative Potency of the Antibody Response against the Spike Glycoprotein.

Microbiol Spectr. 2022-2-23

[9]
Safety and immunogenicity of a modified mRNA-lipid nanoparticle vaccine candidate against COVID-19: Results from a phase 1, dose-escalation study.

Hum Vaccin Immunother. 2024-12-31

[10]
A pan-beta-coronavirus vaccine bearing conserved and asymptomatic B- and T-cell epitopes protects against highly pathogenic Delta and highly transmissible Omicron SARS-CoV-2 variants.

Hum Vaccin Immunother. 2025-12

本文引用的文献

[1]
Neutralization and spike stability of JN.1-derived LB.1, KP.2.3, KP.3, and KP.3.1.1 subvariants.

mBio. 2025-5-14

[2]
Enhanced immune evasion of SARS-CoV-2 variants KP.3.1.1 and XEC through N-terminal domain mutations.

Lancet Infect Dis. 2025-1

[3]
Improving vaccine equity by increasing vaccine thermostability.

Sci Transl Med. 2024-7-24

[4]
Profiling the SARS-CoV-2-specific T-cell response.

Lancet Infect Dis. 2024-8

[5]
Differential Regulation of DC Function, Adaptive Immunity, and MyD88 Dependence by Two Squalene Emulsion-Based Vaccine Adjuvants.

Vaccines (Basel). 2024-5-13

[6]
Correlates of protection against symptomatic SARS-CoV-2 in vaccinated children.

Nat Med. 2024-5

[7]
Enhanced Immunogenicity and Protective Effects against SARS-CoV-2 Following Immunization with a Recombinant RBD-IgG Chimeric Protein.

Vaccines (Basel). 2024-3-27

[8]
Use of an Additional Updated 2023-2024 COVID-19 Vaccine Dose for Adults Aged ≥65 Years: Recommendations of the Advisory Committee on Immunization Practices - United States, 2024.

MMWR Morb Mortal Wkly Rep. 2024-4-25

[9]
Vaccine adjuvants: Tailoring innate recognition to send the right message.

Immunity. 2024-4-9

[10]
AS03 adjuvant enhances the magnitude, persistence, and clonal breadth of memory B cell responses to a plant-based COVID-19 vaccine in humans.

Sci Immunol. 2024-4-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索