文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

接种疫苗儿童中对有症状 SARS-CoV-2 的保护相关因素。

Correlates of protection against symptomatic SARS-CoV-2 in vaccinated children.

机构信息

Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.

Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.

出版信息

Nat Med. 2024 May;30(5):1373-1383. doi: 10.1038/s41591-024-02962-3. Epub 2024 Apr 30.


DOI:10.1038/s41591-024-02962-3
PMID:38689059
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11164684/
Abstract

The paucity of information on longevity of vaccine-induced immune responses and uncertainty of the correlates of protection hinder the development of evidence-based COVID-19 vaccination policies for new birth cohorts. Here, to address these knowledge gaps, we conducted a cohort study of healthy 5-12-year-olds vaccinated with BNT162b2. We serially measured binding and neutralizing antibody titers (nAbs), spike-specific memory B cell (MBC) and spike-reactive T cell responses over 1 year. We found that children mounted antibody, MBC and T cell responses after two doses of BNT162b2, with higher antibody and T cell responses than adults 6 months after vaccination. A booster (third) dose only improved antibody titers without impacting MBC and T cell responses. Among children with hybrid immunity, nAbs and T cell responses were highest in those infected after two vaccine doses. Binding IgG titers, MBC and T cell responses were predictive, with T cells being the most important predictor of protection against symptomatic infection before hybrid immunity; nAbs only correlated with protection after hybrid immunity. The stable MBC and T cell responses over time suggest sustained protection against symptomatic SARS-CoV-2 infection, even when nAbs wane. Booster vaccinations do not confer additional immunological protection to healthy children.

摘要

关于疫苗诱导免疫反应持久性的信息匮乏,以及保护相关性的不确定性,阻碍了针对新出生队列的基于证据的 COVID-19 疫苗接种政策的制定。在这里,为了弥补这些知识空白,我们对接受 BNT162b2 疫苗接种的 5-12 岁健康儿童进行了一项队列研究。我们在 1 年内连续测量了结合抗体和中和抗体滴度(nAb)、针对刺突的记忆 B 细胞(MBC)和刺突反应性 T 细胞反应。我们发现,儿童在接受两剂 BNT162b2 后会产生抗体、MBC 和 T 细胞反应,且接种后 6 个月的抗体和 T 细胞反应高于成年人。加强针(第三针)仅提高了抗体滴度,而对 MBC 和 T 细胞反应没有影响。在具有混合免疫的儿童中,在两剂疫苗接种后感染的儿童中,nAb 和 T 细胞反应最高。结合 IgG 滴度、MBC 和 T 细胞反应具有预测性,T 细胞是在混合免疫之前预防有症状感染的最重要预测因子;nAb 仅与混合免疫后保护相关。MBC 和 T 细胞反应随时间的稳定表明,即使 nAb 减弱,也能持续预防有症状的 SARS-CoV-2 感染。加强针接种不会为健康儿童提供额外的免疫保护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/7436fd0427f0/41591_2024_2962_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/63a50fcf5efe/41591_2024_2962_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/93ad875b953b/41591_2024_2962_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/a881c7cdea8f/41591_2024_2962_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/e9937c646adf/41591_2024_2962_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/272220ccf618/41591_2024_2962_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/4be1efdc60fe/41591_2024_2962_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/e84e47d11291/41591_2024_2962_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/02280a7e2d90/41591_2024_2962_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/f3b3b021f775/41591_2024_2962_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/0f33d0207e08/41591_2024_2962_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/c7f16609e59f/41591_2024_2962_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/25a834209571/41591_2024_2962_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/1fff59318483/41591_2024_2962_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/7436fd0427f0/41591_2024_2962_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/63a50fcf5efe/41591_2024_2962_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/93ad875b953b/41591_2024_2962_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/a881c7cdea8f/41591_2024_2962_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/e9937c646adf/41591_2024_2962_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/272220ccf618/41591_2024_2962_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/4be1efdc60fe/41591_2024_2962_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/e84e47d11291/41591_2024_2962_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/02280a7e2d90/41591_2024_2962_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/f3b3b021f775/41591_2024_2962_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/0f33d0207e08/41591_2024_2962_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/c7f16609e59f/41591_2024_2962_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/25a834209571/41591_2024_2962_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/1fff59318483/41591_2024_2962_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf27/11164684/7436fd0427f0/41591_2024_2962_Fig14_ESM.jpg

相似文献

[1]
Correlates of protection against symptomatic SARS-CoV-2 in vaccinated children.

Nat Med. 2024-5

[2]
Follow-Up and Comparative Assessment of SARS-CoV-2 IgA, IgG, Neutralizing, and Total Antibody Responses After BNT162b2 or mRNA-1273 Heterologous Booster Vaccination.

Influenza Other Respir Viruses. 2024-5

[3]
Immunogenicity of COVID-19 booster vaccination in IEI patients and their one year clinical follow-up after start of the COVID-19 vaccination program.

Front Immunol. 2024-4-18

[4]
Antigen-specific T helper cells and cytokine profiles predict intensity and longevity of cellular and humoral responses to SARS-CoV-2 booster vaccination.

Front Immunol. 2024

[5]
Heterologous and homologous COVID-19 mRNA vaccination schemes for induction of basic immunity show similar immunogenicity regarding long-term spike-specific cellular immunity in healthcare workers.

Vaccine. 2024-8-30

[6]
A single mRNA vaccine dose in COVID-19 patients boosts neutralizing antibodies against SARS-CoV-2 and variants of concern.

Cell Rep Med. 2022-1-18

[7]
Immunogenicity of Two Doses of BNT162b2 mRNA COVID-19 Vaccine with a ChAdOx1-S Booster Dose among Navy Personnel in Mexico.

Viruses. 2024-4-1

[8]
Distinct T cell responsiveness to different COVID-19 vaccines and cross-reactivity to SARS-CoV-2 variants with age and CMV status.

Front Immunol. 2024

[9]
B Cell Response Induced by SARS-CoV-2 Infection Is Boosted by the BNT162b2 Vaccine in Primary Antibody Deficiencies.

Cells. 2021-10-27

[10]
Healthcare Workers in South Korea Maintain a SARS-CoV-2 Antibody Response Six Months After Receiving a Second Dose of the BNT162b2 mRNA Vaccine.

Front Immunol. 2022

引用本文的文献

[1]
Adjuvant combination and antigen multimerization shape neutralizing antibody and T cell responses to a SARS-CoV-2 RBD subunit vaccine.

Front Immunol. 2025-7-17

[2]
Cancer type and gene signatures associated with breakthrough infections following COVID-19 mRNA vaccination.

NPJ Vaccines. 2025-5-9

[3]
Phenotypic heterogeneity defines B cell responses to repeated SARS-CoV-2 exposures through vaccination and infection.

Cell Rep. 2025-4-22

[4]
T and B cell responses in different immunization scenarios for COVID-19: a narrative review.

Front Immunol. 2025-3-18

[5]
Network analysis of adverse event patterns following immunization with mRNA COVID-19 vaccines: real-world data from the European pharmacovigilance database EudraVigilance.

Front Med (Lausanne). 2025-2-19

[6]
Longitudinal humoral immunity against SARS-CoV-2 Spike following infection in individuals from Cameroon.

Virology. 2025-4

[7]
Overview of mucosal immunity and respiratory infections in children: a focus on Africa.

Curr Opin Pediatr. 2025-4-1

[8]
Vaccine-induced T cell responses control Orthoflavivirus challenge infection without neutralizing antibodies in humans.

Nat Microbiol. 2025-2

[9]
Reduced durability of hybrid immunity to SARS-CoV-2 in immunocompromised children.

Front Immunol. 2024-12-17

[10]
Targets of influenza human T-cell response are mostly conserved in H5N1.

mBio. 2025-2-5

本文引用的文献

[1]
Prior vaccination promotes early activation of memory T cells and enhances immune responses during SARS-CoV-2 breakthrough infection.

Nat Immunol. 2023-10

[2]
Prevalence and functional profile of SARS-CoV-2 T cells in asymptomatic Kenyan adults.

J Clin Invest. 2023-7-3

[3]
BNT162b2 vaccine protection against omicron and effect of previous infection variant and vaccination sequence among children and adolescents in Singapore: a population-based cohort study.

Lancet Child Adolesc Health. 2023-7

[4]
Predicting the efficacy of variant-modified COVID-19 vaccine boosters.

Nat Med. 2023-3

[5]
Breakthrough SARS-CoV-2 infections and prediction of moderate-to-severe outcomes during rituximab therapy in patients with rheumatic and musculoskeletal diseases in the UK: a single-centre cohort study.

Lancet Rheumatol. 2023-2

[6]
SARS-CoV-2 variant biology: immune escape, transmission and fitness.

Nat Rev Microbiol. 2023-3

[7]
Association of Spike-Specific T Cells With Relative Protection From Subsequent SARS-CoV-2 Omicron Infection in Young Children.

JAMA Pediatr. 2023-1-1

[8]
SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic.

Immunity. 2022-10-11

[9]
T cell immunity to COVID-19 vaccines.

Science. 2022-8-19

[10]
Comparative neutralisation profile of SARS-CoV-2 omicron subvariants BA.2.75 and BA.5.

Lancet Microbe. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索