Kamal Saleha, Alshehri Mohammed, AlQahtani Yahya, Alshahrani Abdulmonem, Almujally Nouf Abdullah, Jalal Ahmad, Liu Hui
Jiangsu Key Laboratory of Intelligent Medical Image Computing, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China.
Faculty of Computer Science and AI, Air University, E-9, Islamabad, Pakistan.
Front Bioeng Biotechnol. 2025 Jul 17;13:1568690. doi: 10.3389/fbioe.2025.1568690. eCollection 2025.
Human Motion Intention Recognition (HMIR) plays a vital role in advancing medical rehabilitation and assistive technologies by enabling the early detection of pain-indicative actions such as sneezing, coughing, or back discomfort. However, existing systems struggle with recognizing such subtle movements due to complex postural variations and environmental noise. This paper presents a novel multi-modal framework that integrates RGB and depth data to extract high-resolution spatial-temporal and anatomical features for accurate HMIR. Our method combines kinetic energy, optical flow, angular geometry, and depth-based features (e.g., 2.5D point clouds and random occupancy patterns) to represent full-body dynamics robustly. Stochastic Gradient Descent (SGD) is employed to optimize the feature space, and a deep neuro-fuzzy classifier is proposed to balance interpretability and predictive accuracy. Evaluated on three benchmark datasets-NTU RGB + D 120, PKUMMD, and UWA3DII-our model achieves classification accuracies of 94.50%, 91.23%, and 88.60% respectively, significantly outperforming state-of-the-art methods. This research lays the groundwork for future real-time HMIR systems in smart rehabilitation and medical monitoring applications.
人体运动意图识别(HMIR)通过能够早期检测出打喷嚏、咳嗽或背部不适等疼痛指示动作,在推进医学康复和辅助技术方面发挥着至关重要的作用。然而,由于复杂的姿势变化和环境噪声,现有系统在识别此类细微动作时面临困难。本文提出了一种新颖的多模态框架,该框架集成RGB和深度数据,以提取高分辨率的时空和解剖特征,用于准确的人体运动意图识别。我们的方法结合了动能、光流、角度几何和基于深度的特征(例如2.5D点云和平随机占用模式)来稳健地表示全身动态。采用随机梯度下降(SGD)来优化特征空间,并提出了一种深度神经模糊分类器来平衡可解释性和预测准确性。在三个基准数据集——NTU RGB + D 120、PKUMMD和UWA3DII上进行评估,我们的模型分别实现了94.50%、91.23%和88.60%的分类准确率,显著优于现有最先进的方法。这项研究为未来智能康复和医学监测应用中的实时人体运动意图识别系统奠定了基础。