Lee Jeong Jae, Son Han Gyeom, Jeong Kwanyong, Roh Su Bin, Kwon Sunil, Kim Soo Min, Seo Ji Hui, Kim Pyung Soon, Choi Jungkyu, Park Ji Hoon
CO2 & Energy Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
JACS Au. 2025 Jul 1;5(7):3339-3349. doi: 10.1021/jacsau.5c00439. eCollection 2025 Jul 28.
We systematically investigated how the position of the methyl group in methylpiperidine/methylpyridine (MPI/MPY) pairs governs its acceptorless dehydrogenation reactivity through three perspectivesthermodynamics, kinetics, and adsorption. Among the MPI isomers, 2-MPI shows the highest conversion of 97.5% and a fast reaction rate of 1.39 g g min. Thermodynamically, a 2-positioned methyl group lowers the dehydrogenation enthalpy and raises the reaction entropy, enhancing overall spontaneity and enabling near-equilibrium conversion. Kinetically, the 2-methyl group decreases the activation energy for dehydrogenation and slows reverse hydrogenation, thereby boosting the overall reaction rate. From an adsorptive standpoint, it allows the product, MPY, to bind more weakly to the Pd catalyst, mitigating product inhibition that otherwise deactivates catalytic sites at high conversion. By contrast, 3-MPI and 4-MPI have lower thermodynamic spontaneity, higher activation energies, and stronger product inhibition, ultimately reducing their dehydrogenation reactivity. These findings reveal how a seemingly minor structural changethe repositioning of a single methyl groupcan markedly influence the enthalpy-entropy balance, activation barriers, and catalyst deactivation under solvent-free, pressurized conditions. Our integrated approach illustrates that fine-tuning the substitution position offers a powerful molecular design lever for maximizing hydrogen release and minimizing inhibitory effects in liquid organic hydrogen carrier systems.
我们通过热力学、动力学和吸附三个角度,系统地研究了甲基哌啶/甲基吡啶(MPI/MPY)对中甲基的位置如何控制其无受体脱氢反应活性。在MPI异构体中,2-MPI的转化率最高,为97.5%,反应速率为1.39 g g min。从热力学角度来看,2位甲基降低了脱氢焓,提高了反应熵,增强了整体自发性,实现了接近平衡的转化。从动力学角度来看,2-甲基降低了脱氢的活化能,减缓了逆氢化反应,从而提高了整体反应速率。从吸附角度来看,它使产物MPY与Pd催化剂的结合更弱,减轻了产物抑制,否则在高转化率下会使催化位点失活。相比之下,3-MPI和4-MPI的热力学自发性较低,活化能较高,产物抑制较强,最终降低了它们的脱氢反应活性。这些发现揭示了一个看似微小的结构变化——单个甲基的重新定位——如何在无溶剂、加压条件下显著影响焓-熵平衡、活化能垒和催化剂失活。我们的综合方法表明,微调取代位置为在液体有机氢载体系统中最大化氢释放和最小化抑制作用提供了一个强大的分子设计杠杆。