Suppr超能文献

液体有机储氢材料(LOHCs):迈向无氢的氢能经济。

Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

机构信息

Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Egerlandstrasse 3, 91058 Erlangen, Germany.

Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Egerlandstrasse 3, 91058 Erlangen, Germany.

出版信息

Acc Chem Res. 2017 Jan 17;50(1):74-85. doi: 10.1021/acs.accounts.6b00474. Epub 2016 Dec 22.

Abstract

The need to drastically reduce CO emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO or N, hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of pure hydrocarbon and nitrogen-containing LOHC compounds are derived from the literature, and attractive future research directions are highlighted. Finally, applications of the LOHC technology are presented. This part covers stationary energy storage (on-grid and off-grid), hydrogen logistics, and on-board hydrogen production for mobile applications. Technology readiness of these fields is very different. For stationary energy storage systems, the feasibility of the LOHC technology has been recently proven in commercial demonstrators, and cost aspects will decide on their further commercial success. For other highly attractive options, such as, hydrogen delivery to hydrogen filling stations or direct-LOHC-fuel cell applications, significant efforts in fundamental and applied research are still needed and, hopefully, encouraged by this Account.

摘要

大幅减少二氧化碳排放的需求将导致我们当前的碳基能源系统转变为更可持续的可再生能源系统。在这个过程中,氢气将作为二次能源载体变得越来越重要。需要 TWh 规模的储能(以弥补风能和太阳能收获的延长时间)和可再生能源当量的全球物流,这将为未来的氢能经济创造额外的驱动力。然而,氢气的性质需要专用的基础设施,这在很大程度上阻止了元素氢引入能源领域。最近在以化学结合形式处理氢气的科学和技术进展,支持了这样一种技术愿景,即未来的氢能经济可以在不处理大量元素氢的情况下运作。LOHC 系统由一对贫氢和富氢有机化合物组成,通过反复的催化加氢和脱氢循环储存氢气。虽然以 LOHC 的形式处理氢气可以利用现有的燃料基础设施,但它也建立在公众对处理液体能源载体的现有信心之上。与气体(如 CO 或 N)的加氢储氢相比,LOHC 系统从 LOHC 系统中释放氢气后,高沸点载体化合物冷凝后会产生纯净的氢气。本账户重点介绍了使用 LOHC 系统进行氢气储存的最新技术现状。它首先介绍了未来氢能经济的现状,并由此得出了对合适的 LOHC 化合物的要求。介绍了文献中成功应用的分子结构,并讨论了它们的性能概况。讨论了涉及的加氢和脱氢催化的基础和应用方面,从文献中得出了纯烃类和含氮 LOHC 化合物催化转化的特征差异,并强调了有吸引力的未来研究方向。最后,介绍了 LOHC 技术的应用。这部分涵盖了固定储能(并网和离网)、氢气物流以及用于移动应用的车载制氢。这些领域的技术成熟度差异很大。对于固定储能系统,LOHC 技术的可行性最近在商业示范中得到了验证,成本方面将决定其进一步的商业成功。对于其他极具吸引力的选择,例如氢气输送到氢气加注站或直接使用 LOHC 燃料的燃料电池应用,仍然需要在基础和应用研究方面做出重大努力,并希望通过本账户得到鼓励。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验