Suppr超能文献

从僵尸到智能设备:用于物联网应用的染料敏化太阳能电池的演变

From Zombies to Smart Devices: The Evolution of Dye-Sensitized Solar Cells for IoT Applications.

作者信息

Sasitharan Kezia, Freitag Marina

机构信息

School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.

出版信息

ACS Appl Energy Mater. 2025 Jul 15;8(14):9891-9899. doi: 10.1021/acsaem.5c00624. eCollection 2025 Jul 28.

Abstract

The evolution of dye-sensitized solar cells (DSCs) has been fundamentally shaped by advances in charge transport materials, with copper-based coordination complexes enabling efficient redox mediation and, uniquely, the in situ formation of solid-state hole transport networks. This Spotlight traces the materials design principles underpinning the "zombie" DSC, devices that maintain or even improve performance after the spontaneous solidification of a liquid electrolyte within the mesoporous TiO scaffold. Building on the 2015 demonstration of copper-phenanthroline complexes forming self-assembled, conductive matrices, we discuss the interplay of ligand rigidity, redox potential, and reorganization energy and compare with recent breakthroughs in cobalt and iron polypyridyl complexes as well as polyiodide systems. Advances in ligand engineering have yielded amorphous, robust hole conductors with conductivities exceeding 1 mS cm and power conversion efficiencies up to 38% under 1000 lx indoor light, with less than 5% efficiency loss after 1000 h continuous operation. Rapid, scalable processing, such as direct electrode drying and microwave-assisted evaporation, now enables large-area modules to be fabricated in under an hour, with stable integration into Internet of Things (IoT) sensor systems. By uniting molecular design, process optimization, and real-world device integration, zombie DSCs offer a compelling route to sustainable, high-performance indoor photovoltaics and self-powered electronics. Envisioning a new phase of IoT, these DSCs can power small, autonomously operating sensor modules. Moreover, integrating local intelligence, such as resource-limited neural networks, allows on-device analytics and real-time energy management, boosting efficiency while relying solely on ambient light.

摘要

染料敏化太阳能电池(DSC)的发展从根本上受到电荷传输材料进步的影响,基于铜的配位络合物能够实现高效的氧化还原介导,并且独特地能够原位形成固态空穴传输网络。本聚焦文章追溯了支撑“僵尸”DSC的材料设计原则,这种器件在介孔TiO支架内的液体电解质自发固化后仍能保持甚至提高性能。基于2015年关于铜菲咯啉络合物形成自组装导电基质的演示,我们讨论了配体刚性、氧化还原电位和重组能之间的相互作用,并与钴和铁多吡啶络合物以及聚碘化物体系的近期突破进行了比较。配体工程的进展产生了非晶态、坚固的空穴导体,其电导率超过1 mS/cm,在1000 lx室内光下功率转换效率高达38%,连续运行1000小时后效率损失小于5%。快速、可扩展的加工方法,如直接电极干燥和微波辅助蒸发,现在能够在一小时内制造大面积模块,并稳定集成到物联网(IoT)传感器系统中。通过将分子设计、工艺优化和实际器件集成相结合,“僵尸”DSC为可持续、高性能的室内光伏和自供电电子设备提供了一条引人注目的途径。展望物联网的新阶段,这些DSC可为小型自主运行的传感器模块供电。此外,集成局部智能,如资源受限的神经网络,可实现设备上的分析和实时能源管理,在仅依靠环境光的情况下提高效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a0/12308636/e0c2ed5ed217/ae5c00624_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验