Patkar Sushant, Rosean Timothy R, Patel Palak, Harmon Stephanie, Choyke Peter, Jamaspishvili Tamara, Turkbey Baris
bioRxiv. 2025 Jun 17:2025.06.11.658673. doi: 10.1101/2025.06.11.658673.
The tumor microenvironment (TME) is a critical focus for biomarker discovery and therapeutic targeting in cancer. However, widespread clinical adoption of TME profiling is hindered by the high cost and technical complexity of current platforms such as spatial transcriptomics and proteomics. Artificial Intelligence (AI)-based analysis of the TME from routine Hematoxylin & Eosin (H&E)-stained pathology slides presents a promising alternative. Yet, most existing deep learning approaches depend on extensive high-quality single-cell or patch-level annotations, which are labor-intensive and costly to generate. To address these limitations, we previously introduced HistoTME, a weakly supervised deep learning framework that predicts the activity of cell type-specific transcriptomic signatures directly from whole slide H&E images of non-small cell lung cancer. This enables rapid, high throughput analysis of the TME composition from whole slide H&E images (WSI) without the need for segmenting and classifying individual cells. In this work, we present HistoTME-v2, a pan-cancer extension of HistoTME, applied across 25 solid tumor types, substantially broadening the scope of prior efforts. HistoTME-v2 demonstrates high accuracy for predicting cell type-specific transcriptomic signature activity from H&E images, achieving a median Pearson correlation of 0.61 with ground truth measurements in internal cross- validation on The Cancer Genome Atlas (TCGA), encompassing 7,586 WSIs, 6,901 patients, and 24 cancer types, and a median Pearson correlation of 0.53 on external validation datasets spanning 5,657 WSIs, 1,775 patients and 9 cancer types. Furthermore, HistoTME- v2 resolves the spatial distribution of key immune and stromal cell types, exhibiting strong spatial concordance with single-cell measurements derived from multiplex imaging (CODEX, IHC) as well as Visium spatial transcriptomics, spanning 259 WSI, 154 patients, and 7 cancer types. Overall, across both bulk and spatial settings, HistoTME-v2 significantly outperforms baselines, positioning it as a robust, interpretable and cost-efficient tool for TME profiling and advancing the integration of spatial biology into routine pathology workflows.
肿瘤微环境(TME)是癌症生物标志物发现和治疗靶点的关键研究重点。然而,诸如空间转录组学和蛋白质组学等当前平台的高成本和技术复杂性阻碍了TME分析在临床上的广泛应用。基于人工智能(AI)从常规苏木精和伊红(H&E)染色病理切片分析TME是一种很有前景的替代方法。然而,大多数现有的深度学习方法依赖于大量高质量的单细胞或斑块级注释,生成这些注释既费力又昂贵。为了解决这些局限性,我们之前引入了HistoTME,这是一个弱监督深度学习框架,可直接从非小细胞肺癌的全切片H&E图像预测细胞类型特异性转录组特征的活性。这使得能够从全切片H&E图像(WSI)对TME组成进行快速、高通量分析,而无需对单个细胞进行分割和分类。在这项工作中,我们展示了HistoTME-v2,它是HistoTME的泛癌扩展版本,应用于25种实体瘤类型,大大拓宽了先前研究的范围。HistoTME-v2在从H&E图像预测细胞类型特异性转录组特征活性方面表现出高精度,在癌症基因组图谱(TCGA)的内部交叉验证中与真实测量值的皮尔逊相关系数中位数为0.61,涵盖7586张WSI、6901名患者和24种癌症类型,在跨越5657张WSI、1775名患者和9种癌症类型的外部验证数据集中皮尔逊相关系数中位数为0.53。此外,HistoTME-v2解析了关键免疫和基质细胞类型的空间分布,与来自多重成像(CODEX、免疫组化)以及Visium空间转录组学的单细胞测量结果表现出很强的空间一致性,涵盖259张WSI、154名患者和7种癌症类型。总体而言,在批量和空间设置中,HistoTME-v2均显著优于基线,使其成为用于TME分析以及推动空间生物学融入常规病理工作流程的强大、可解释且经济高效的工具。