Suppr超能文献

交互式机器人学习中联合模态的力量。

The power of combined modalities in interactive robot learning.

作者信息

Beierling Helen, Beierling Robin, Vollmer Anna-Lisa

机构信息

Interactive Robotics in Medicine and Care, Medical School OWL, Bielefeld University, Bielefeld, Germany.

出版信息

Front Robot AI. 2025 Jul 17;12:1598968. doi: 10.3389/frobt.2025.1598968. eCollection 2025.

Abstract

With the continuous advancement of Artificial intelligence (AI), robots as embodied intelligent systems are increasingly becoming more present in daily life like households or in elderly care. As a result, lay users are required to interact with these systems more frequently and teach them to meet individual needs. Human-in-the-loop reinforcement learning (HIL-RL) offers an effective way to realize this teaching. Studies show that various feedback modalities, such as preference, guidance, or demonstration can significantly enhance learning success, though their suitability varies among users expertise in robotics. Research also indicates that users apply different scaffolding strategies when teaching a robot, such as motivating it to explore actions that promise success. Thus, providing a collection of different feedback modalities allows users to choose the method that best suits their teaching strategy, and allows the system to individually support the user based on their interaction behavior. However, most state-of-the-art approaches provide users with only one feedback modality at a time. Investigating combined feedback modalities in interactive robot learning remains an open challenge. To address this, we conducted a study that combined common feedback modalities. Our research questions focused on whether these combinations improve learning outcomes, reveal user preferences, show differences in perceived effectiveness, and identify which modalities influence learning the most. The results show that combining the feedback modalities improves learning, with users perceiving the effectiveness of the modalities vary ways, and certain modalities directly impacting learning success. The study demonstrates that combining feedback modalities can support learning even in a simplified setting and suggests the potential for broader applicability, especially in robot learning scenarios with a focus on user interaction. Thus, this paper aims to motivate the use of combined feedback modalities in interactive imitation learning.

摘要

随着人工智能(AI)的不断进步,作为具身智能系统的机器人在日常生活中越来越常见,如家庭或老年护理场景。因此,普通用户需要更频繁地与这些系统交互,并教会它们满足个人需求。人在回路强化学习(HIL-RL)提供了一种实现这种教学的有效方法。研究表明,各种反馈方式,如偏好、指导或示范,都能显著提高学习成功率,尽管它们的适用性因用户在机器人技术方面的专业知识而异。研究还表明,用户在教机器人时会采用不同的支架策略,比如激励它探索有望成功的动作。因此,提供一系列不同的反馈方式能让用户选择最适合自己教学策略的方法,并让系统根据用户的交互行为提供个性化支持。然而,大多数最先进的方法一次只向用户提供一种反馈方式。研究交互式机器人学习中的组合反馈方式仍然是一个开放的挑战。为了解决这个问题,我们进行了一项结合常见反馈方式的研究。我们的研究问题集中在这些组合是否能改善学习结果、揭示用户偏好、显示感知有效性的差异,以及确定哪些方式对学习影响最大。结果表明,组合反馈方式能提高学习效果,用户对这些方式有效性的感知各不相同,且某些方式直接影响学习成功率。该研究表明,即使在简化的环境中,组合反馈方式也能支持学习,并暗示了其更广泛应用的潜力,特别是在注重用户交互的机器人学习场景中。因此,本文旨在推动在交互式模仿学习中使用组合反馈方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4329/12312635/b7ae8257b806/frobt-12-1598968-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验