Potok Paulina, Zawada Martyna, Wieczorek Robert, Gumienna-Kontecka Elżbieta, Potocki Sławomir
Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie St, 50-383 Wroclaw, Poland.
Dalton Trans. 2025 Aug 19;54(33):12624-12638. doi: 10.1039/d5dt01074h.
Cancer metastasis remains the leading cause of cancer-related morbidity and mortality, highlighting the urgent need for novel therapeutic strategies. Matrix metalloproteinases (MMPs), , the membrane-bound MMP-14, play pivotal roles in tumor progression through extracellular matrix degradation and angiogenesis promotion. The catalytic activity of MMPs is critically dependent on Zn(II) coordination, making the zinc-binding site an attractive target for inhibitor design. This study investigates the thermodynamic properties of Zn(II) complexes with active site of MMP-14 and selected four peptide-based inhibitors, focusing on inhibitors' potential to disrupt enzymatic activity by incorporating into the Zn(II) coordination sphere. The research utilized complementary analytical techniques including potentiometric titrations, mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy to characterize the stoichiometry, donor atom preferences, and thermodynamic stability of binary Zn(II)-MMP-14/inhibitor, and ternary MMP-14-Zn(II)-inhibitor complexes. Density Functional Theory (DFT) calculations further elucidated coordination modes and structural properties of ternary complexes. Results showed that Zn(II) binding affinity depends on multiple factors beyond simply the number of histidine residues in the inhibitors, including their spatial arrangement and local environment. The most stable ternary MMP-14-Zn(II)-inhibitor complex was formed by inhibitor 1 (SDMAHSLPGHSH), which coordinates Zn(II) through aspartic acid, as confirmed by NMR spectroscopy and DFT. The formation of cooperative hydrogen bonding networks contributed significantly to the stability of the MMP-14-Zn(II)-Inh1 complex, mirroring interactions observed in natural MMP-14 inhibitors such as TIMP-2. This comprehensive analysis provides critical insights into the coordination chemistry of Zn(II) within the MMP active site and its interactions with potential inhibitors, establishing a molecular foundation for rational design of selective MMP inhibitors with therapeutic potential.
癌症转移仍然是癌症相关发病和死亡的主要原因,这凸显了对新型治疗策略的迫切需求。基质金属蛋白酶(MMPs),尤其是膜结合型MMP-14,通过细胞外基质降解和促进血管生成在肿瘤进展中发挥关键作用。MMPs的催化活性严重依赖于锌(II)配位,这使得锌结合位点成为抑制剂设计的一个有吸引力的靶点。本研究调查了锌(II)与MMP-14活性位点及四种选定的基于肽的抑制剂形成的配合物的热力学性质,重点关注抑制剂通过纳入锌(II)配位球来破坏酶活性的潜力。该研究利用了电位滴定、质谱(MS)和核磁共振(NMR)光谱等互补分析技术来表征二元锌(II)-MMP-14/抑制剂以及三元MMP-14-锌(II)-抑制剂配合物的化学计量、供体原子偏好和热力学稳定性。密度泛函理论(DFT)计算进一步阐明了三元配合物的配位模式和结构性质。结果表明,锌(II)结合亲和力不仅取决于抑制剂中组氨酸残基的数量,还取决于多种因素,包括它们的空间排列和局部环境。最稳定的三元MMP-14-锌(II)-抑制剂配合物由抑制剂1(SDMAHSLPGHSH)形成,并通过核磁共振光谱和DFT证实其通过天冬氨酸与锌(II)配位。协同氢键网络的形成对MMP-14-锌(II)-Inh1配合物的稳定性有显著贡献,这反映了在天然MMP-14抑制剂(如TIMP-2)中观察到的相互作用。这种全面分析为MMP活性位点内锌(II)的配位化学及其与潜在抑制剂的相互作用提供了关键见解,为合理设计具有治疗潜力的选择性MMP抑制剂奠定了分子基础。