Portal-Gonzalez Nayanci, Wang Wenbo, He Wenxing, Santos-Bermudez Ramon
School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong 250022, China.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf158.
The plant holobiont-an integrated unit of the host and its microbiome-has co-evolved through ecological and genetic interactions. Microbiome engineering offers a promising route to enhance resilience in response to climate stress, soil degradation, and yield stagnation. This review presents an integrated framework combining microbial ecology, synthetic biology, and computational modeling to rationally design synthetic microbial communities (SynComs) for agriculture. We outline ecological principles-priority effects, keystone taxa, and functional redundancy-that shape microbiome assembly and guide SynCom design. Strategies like CRISPR interference, biosensor circuits, and quorum-sensing modules enable programmable microbial functions. We also highlight the predictive potential of in silico modeling-including genome-scale metabolic models, dynamic flux balance analysis, and machine learning-to simulate interactions, optimize SynCom composition, and enhance design accuracy. To bridge lab and field, we discuss native microbial chassis, encapsulation, and precision delivery as tools for scalable, ecosystem-integrated deployment. We introduce the concept of the programmable holobiont: an engineered plant-microbe partnership capable of dynamic feedback, interkingdom signaling, and ecological memory. This systems-level perspective reframes plants as designable ecosystems. By synthesizing cross-disciplinary advances, we offer a roadmap for climate-resilient agriculture, where engineered microbiomes improve sustainability, yield stability, and environmental adaptation.
植物全生物——宿主及其微生物组的整合单元——通过生态和遗传相互作用共同进化。微生物组工程为增强应对气候压力、土壤退化和产量停滞的恢复力提供了一条有前景的途径。本综述提出了一个整合框架,将微生物生态学、合成生物学和计算建模相结合,以合理设计用于农业的合成微生物群落(SynComs)。我们概述了塑造微生物组组装并指导SynCom设计的生态原则——优先效应、关键类群和功能冗余。诸如CRISPR干扰、生物传感器电路和群体感应模块等策略可实现可编程的微生物功能。我们还强调了计算机模拟的预测潜力——包括基因组规模代谢模型、动态通量平衡分析和机器学习——以模拟相互作用、优化SynCom组成并提高设计准确性。为了在实验室和田间之间架起桥梁,我们讨论了天然微生物底盘、封装和精准递送作为可扩展的、生态系统整合式部署的工具。我们引入了可编程全生物的概念:一种能够进行动态反馈、跨界信号传递和生态记忆的工程化植物-微生物伙伴关系。这种系统层面的观点将植物重新定义为可设计的生态系统。通过综合跨学科进展,我们为气候适应型农业提供了一条路线图,其中工程化微生物组可提高可持续性、产量稳定性和环境适应性。