Tatman Ben P, Sridharan Vidhyalakshmi, Uttarkabat Motilal, Jaroniec Christopher P, Ernst Matthias, Rovó Petra, Schanda Paul
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States.
J Am Chem Soc. 2025 Aug 13;147(32):29315-29326. doi: 10.1021/jacs.5c09057. Epub 2025 Aug 1.
Microsecond-to-millisecond motions are instrumental for many biomolecular functions, including enzymatic activity and ligand binding. Bloch-McConnell Relaxation Dispersion (BMRD) Nuclear Magnetic Resonance (NMR) spectroscopy is a key technique for studying these dynamic processes. While BMRD experiments are routinely used to probe protein motions in solution, the experiment is more demanding in the solid state, where dipolar couplings complicate the spin dynamics. It is believed that high deuteration levels are required and sufficient to obtain accurate and quantitative data. Here we show that even under fast magic-angle spinning and high levels of deuteration artifactual "bumps" in N BMRD profiles are common. The origin of these artifacts is identified as a second-order three-spin Mixed Rotational and Rotary Resonance (MIRROR) recoupling condition. These artifacts are found to be a significant confounding factor for the accurate quantification of microsecond protein dynamics using BMRD in the solid state. We show that the application of low-power continuous wave (CW) decoupling simultaneously with the N spin-lock leads to the suppression of these conditions and enables quantitative measurements of microsecond exchange in the solid state. Remarkably, the application of decoupling allows the measurement of accurate BMRD even in fully protonated proteins at 100 kHz MAS, thus extending the scope of μs dynamics measurements in MAS NMR.
微秒到毫秒级的运动对许多生物分子功能至关重要,包括酶活性和配体结合。布洛赫 - 麦康奈尔弛豫色散(BMRD)核磁共振(NMR)光谱是研究这些动态过程的关键技术。虽然BMRD实验通常用于探测溶液中的蛋白质运动,但在固态下该实验要求更高,因为偶极耦合会使自旋动力学变得复杂。人们认为需要高氘代水平且这一水平足以获得准确的定量数据。在此我们表明,即使在快速魔角旋转和高氘代水平下,N BMRD谱图中出现人为的“凸起”也很常见。这些伪影的起源被确定为二阶三自旋混合旋转和旋转共振(MIRROR)重耦合条件。发现这些伪影是在固态下使用BMRD准确定量微秒级蛋白质动力学的一个重要干扰因素。我们表明,在进行N自旋锁定的同时应用低功率连续波(CW)去耦会抑制这些条件,并能够对固态下的微秒级交换进行定量测量。值得注意的是,去耦的应用甚至能在100 kHz MAS下对完全质子化的蛋白质进行准确的BMRD测量,从而扩展了MAS NMR中微秒级动力学测量的范围。