Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
Department of Biochemistry, University of Wisconsin at Madison, Madison, Wisconsin 53706, United States.
J Am Chem Soc. 2023 May 10;145(18):10104-10115. doi: 10.1021/jacs.3c00340. Epub 2023 Apr 25.
The bacterial transporter EmrE is a homo-dimeric membrane protein that effluxes cationic polyaromatic substrates against the concentration gradient by coupling to proton transport. As the archetype of the small multidrug resistance family of transporters, EmrE structure and dynamics provide atomic insights into the mechanism of transport by this family of proteins. We recently determined high-resolution structures of EmrE in complex with a cationic substrate, tetra(4-fluorophenyl)phosphonium (F-TPP), using solid-state NMR spectroscopy and an S64V-EmrE mutant. The substrate-bound protein exhibits distinct structures at acidic and basic pH, reflecting changes upon binding or release of a proton from residue E14, respectively. To obtain insight into the protein dynamics that mediate substrate transport, here we measure N rotating-frame spin-lattice relaxation () rates of F-TPP-bound S64V-EmrE in lipid bilayers under magic-angle spinning (MAS). Using perdeuterated and back-exchanged protein and H-detected N spin-lock experiments under 55 kHz MAS, we measured N rates site-specifically. Many residues show spin-lock field-dependent N relaxation rates. This relaxation dispersion indicates the presence of backbone motions at a rate of about 6000 s at 280 K for the protein at both acidic and basic pH. This motional rate is 3 orders of magnitude faster than the alternating access rate but is within the range estimated for substrate binding. We propose that these microsecond motions may allow EmrE to sample different conformations to facilitate substrate binding and release from the transport pore.
细菌转运蛋白 EmrE 是一种同二聚体膜蛋白,通过与质子转运偶联,将阳离子多环芳烃底物逆浓度梯度排出。作为小分子多药耐药家族转运蛋白的原型,EmrE 的结构和动力学为该家族蛋白的转运机制提供了原子水平的见解。我们最近使用固态 NMR 光谱学和 S64V-EmrE 突变体,确定了 EmrE 与阳离子底物四(4-氟苯基)膦(F-TPP)复合物的高分辨率结构。在酸性和碱性 pH 下,结合质子的蛋白表现出不同的结构,分别反映了结合或释放质子后残基 E14 的变化。为了深入了解介导底物转运的蛋白质动力学,我们在此使用魔角旋转(MAS)下脂质双层中 S64V-EmrE 结合 F-TPP 的 N 旋转框架自旋晶格弛豫率()来进行测量。使用氘代和回交换的蛋白质以及在 55 kHz MAS 下的 H 检测 N 自旋锁定实验,我们特异性地测量了 N 速率。许多残基显示出自旋锁定场依赖的 N 弛豫率。这种弛豫分散表明,在酸性和碱性 pH 下,蛋白质的骨架运动速率约为 6000 s-1,在 280 K 下存在。这种运动速率比交替访问速率快 3 个数量级,但在估计的底物结合范围内。我们提出,这些微秒级的运动可能使 EmrE 能够采样不同的构象,从而促进底物结合和从转运孔释放。