Suppr超能文献

细菌转运蛋白 EmrE 在脂质双层中的微秒运动。

Microsecond Motion of the Bacterial Transporter EmrE in Lipid Bilayers.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

Department of Biochemistry, University of Wisconsin at Madison, Madison, Wisconsin 53706, United States.

出版信息

J Am Chem Soc. 2023 May 10;145(18):10104-10115. doi: 10.1021/jacs.3c00340. Epub 2023 Apr 25.

Abstract

The bacterial transporter EmrE is a homo-dimeric membrane protein that effluxes cationic polyaromatic substrates against the concentration gradient by coupling to proton transport. As the archetype of the small multidrug resistance family of transporters, EmrE structure and dynamics provide atomic insights into the mechanism of transport by this family of proteins. We recently determined high-resolution structures of EmrE in complex with a cationic substrate, tetra(4-fluorophenyl)phosphonium (F-TPP), using solid-state NMR spectroscopy and an S64V-EmrE mutant. The substrate-bound protein exhibits distinct structures at acidic and basic pH, reflecting changes upon binding or release of a proton from residue E14, respectively. To obtain insight into the protein dynamics that mediate substrate transport, here we measure N rotating-frame spin-lattice relaxation () rates of F-TPP-bound S64V-EmrE in lipid bilayers under magic-angle spinning (MAS). Using perdeuterated and back-exchanged protein and H-detected N spin-lock experiments under 55 kHz MAS, we measured N rates site-specifically. Many residues show spin-lock field-dependent N relaxation rates. This relaxation dispersion indicates the presence of backbone motions at a rate of about 6000 s at 280 K for the protein at both acidic and basic pH. This motional rate is 3 orders of magnitude faster than the alternating access rate but is within the range estimated for substrate binding. We propose that these microsecond motions may allow EmrE to sample different conformations to facilitate substrate binding and release from the transport pore.

摘要

细菌转运蛋白 EmrE 是一种同二聚体膜蛋白,通过与质子转运偶联,将阳离子多环芳烃底物逆浓度梯度排出。作为小分子多药耐药家族转运蛋白的原型,EmrE 的结构和动力学为该家族蛋白的转运机制提供了原子水平的见解。我们最近使用固态 NMR 光谱学和 S64V-EmrE 突变体,确定了 EmrE 与阳离子底物四(4-氟苯基)膦(F-TPP)复合物的高分辨率结构。在酸性和碱性 pH 下,结合质子的蛋白表现出不同的结构,分别反映了结合或释放质子后残基 E14 的变化。为了深入了解介导底物转运的蛋白质动力学,我们在此使用魔角旋转(MAS)下脂质双层中 S64V-EmrE 结合 F-TPP 的 N 旋转框架自旋晶格弛豫率()来进行测量。使用氘代和回交换的蛋白质以及在 55 kHz MAS 下的 H 检测 N 自旋锁定实验,我们特异性地测量了 N 速率。许多残基显示出自旋锁定场依赖的 N 弛豫率。这种弛豫分散表明,在酸性和碱性 pH 下,蛋白质的骨架运动速率约为 6000 s-1,在 280 K 下存在。这种运动速率比交替访问速率快 3 个数量级,但在估计的底物结合范围内。我们提出,这些微秒级的运动可能使 EmrE 能够采样不同的构象,从而促进底物结合和从转运孔释放。

相似文献

1
Microsecond Motion of the Bacterial Transporter EmrE in Lipid Bilayers.
J Am Chem Soc. 2023 May 10;145(18):10104-10115. doi: 10.1021/jacs.3c00340. Epub 2023 Apr 25.
2
Structure and dynamics of the drug-bound bacterial transporter EmrE in lipid bilayers.
Nat Commun. 2021 Jan 8;12(1):172. doi: 10.1038/s41467-020-20468-7.
3
High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport.
Nat Commun. 2022 Feb 18;13(1):991. doi: 10.1038/s41467-022-28556-6.
4
Electrostatic lock in the transport cycle of the multidrug resistance transporter EmrE.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7502-E7511. doi: 10.1073/pnas.1722399115. Epub 2018 Jul 19.
6
The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release.
J Biol Chem. 2018 Dec 7;293(49):19137-19147. doi: 10.1074/jbc.RA118.005430. Epub 2018 Oct 4.
7
Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance.
J Am Chem Soc. 2014 Jun 4;136(22):8072-80. doi: 10.1021/ja503145x. Epub 2014 May 23.
9
Protonation-dependent conformational dynamics of the multidrug transporter EmrE.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1220-5. doi: 10.1073/pnas.1520431113. Epub 2016 Jan 19.
10
Precious things come in little packages.
J Mol Microbiol Biotechnol. 2001 Apr;3(2):155-62.

引用本文的文献

1
Bumps on the Road: The Way to Clean Relaxation Dispersion Magic-Angle Spinning NMR.
J Am Chem Soc. 2025 Aug 13;147(32):29315-29326. doi: 10.1021/jacs.5c09057. Epub 2025 Aug 1.
2
Pseudo rotary resonance relaxation dispersion effects in isotropic samples.
Magn Reson (Gott). 2025 Jun 3;6(1):119-129. doi: 10.5194/mr-6-119-2025. eCollection 2025.
4
Solid-state NMR of membrane peptides and proteins in the lipid cubic phase.
Biophys J. 2025 May 6;124(9):1387-1400. doi: 10.1016/j.bpj.2025.03.012. Epub 2025 Mar 20.

本文引用的文献

2
Rotating Frame Relaxation in Magic Angle Spinning Solid State NMR, a Promising Tool for Characterizing Biopolymer Motion.
Chem Rev. 2022 Sep 28;122(18):14940-14953. doi: 10.1021/acs.chemrev.2c00442. Epub 2022 Sep 13.
3
H-Detected Biomolecular NMR under Fast Magic-Angle Spinning.
Chem Rev. 2022 May 25;122(10):9943-10018. doi: 10.1021/acs.chemrev.1c00918. Epub 2022 May 10.
4
High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport.
Nat Commun. 2022 Feb 18;13(1):991. doi: 10.1038/s41467-022-28556-6.
5
Structure and dynamics of the drug-bound bacterial transporter EmrE in lipid bilayers.
Nat Commun. 2021 Jan 8;12(1):172. doi: 10.1038/s41467-020-20468-7.
6
The structural basis of promiscuity in small multidrug resistance transporters.
Nat Commun. 2020 Nov 27;11(1):6064. doi: 10.1038/s41467-020-19820-8.
7
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
8
How to measure and evaluate binding affinities.
Elife. 2020 Aug 6;9:e57264. doi: 10.7554/eLife.57264.
9
Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism.
Nat Struct Mol Biol. 2020 Feb;27(2):160-167. doi: 10.1038/s41594-019-0371-2. Epub 2020 Feb 3.
10
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验