ConvNTC:用于检测“A - A - B”型生物三联体的卷积神经张量补全
ConvNTC: convolutional neural tensor completion for detecting "A-A-B" type biological triplets.
作者信息
Liu Pei, Liang Xiao, Li Yue, Luo Jiawei
机构信息
Department of Computer Science, College of Computer Science and Electronic Engineering, 116 Lu Shan South Road, Hunan University, Changsha 410082, Hunan, China.
School of Computer Science, McGill University, Lorne M. Trottier Building, 3630 University Street, Montréal, QC H3A 0C6, Canada.
出版信息
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf372.
Systematically investigating interactions among molecules of the same type across different contexts is crucial for unraveling disease mechanisms and developing potential therapeutic strategies. The "A-A-B" triplet paradigm provides a principled approach to model such context-specific interactions, and leveraging third-order tensor to capture such type ternary relationships is an efficient strategy. However, effectively modeling both multilinear and nonlinear characteristics to accurately identify such triplets using tensor-based methods remains a challenge. In this paper, we propose a novel Convolutional Neural Tensor Completion (ConvNTC) framework that collaboratively learns the multilinear and nonlinear representations to model triplet-based network interactions. ConvNTC consists of a multilinear module and a nonlinear module. The former is a tensor decomposition approach that integrates multiple constraints to learn the tensor factor embeddings. The latter contains three components: an embedding generator to produce position-specific index embeddings for each tensor entry in addition to the factor embeddings, a convolutional encoder to perform nonlinear feature mapping while preserving the tensor's rank-one property, and a Kolmogorov-Arnold Network (KAN) based predictor to effectively capture high-dimensional relationships aligned with the intrinsic structure of real-world data. We evaluate ConvNTC on two types triplet datasets of the "A-A-B" type: miRNA-miRNA-disease and drug-drug-cell. Comprehensive experiments against 11 state-of-the-art methods demonstrate the superiority of ConvNTC in terms of triplet prediction. ConvNTC reveals promising prognostic values of the miRNA-miRNA interactions on breast cancer and detects synergistic drug combinations in cancer cell lines.
系统地研究不同背景下同一类型分子之间的相互作用对于揭示疾病机制和制定潜在的治疗策略至关重要。“A-A-B”三元组范式提供了一种原则性方法来模拟这种特定背景下的相互作用,利用三阶张量来捕捉这种类型的三元关系是一种有效的策略。然而,使用基于张量的方法有效地对多线性和非线性特征进行建模以准确识别此类三元组仍然是一个挑战。在本文中,我们提出了一种新颖的卷积神经张量补全(ConvNTC)框架,该框架协同学习多线性和非线性表示以对基于三元组的网络相互作用进行建模。ConvNTC由一个多线性模块和一个非线性模块组成。前者是一种张量分解方法,它整合了多个约束来学习张量因子嵌入。后者包含三个组件:一个嵌入生成器,除了因子嵌入之外,还为每个张量条目生成特定位置的索引嵌入;一个卷积编码器,在保持张量的秩一属性的同时执行非线性特征映射;以及一个基于柯尔莫哥洛夫 - 阿诺德网络(KAN)的预测器,以有效地捕捉与现实世界数据的内在结构对齐的高维关系。我们在“A-A-B”类型的两种三元组数据集上评估ConvNTC:miRNA-miRNA-疾病和药物-药物-细胞。针对11种最先进方法的综合实验证明了ConvNTC在三元组预测方面的优越性。ConvNTC揭示了miRNA-miRNA相互作用在乳腺癌上有前景的预后价值,并检测到癌细胞系中的协同药物组合。
相似文献
Brief Bioinform. 2025-7-2
J Bioinform Comput Biol. 2024-6
Comput Med Imaging Graph. 2025-9
2025-1
J Transl Med. 2025-7-8
J Chem Theory Comput. 2025-5-13
本文引用的文献
J Cheminform. 2024-4-15
Nucleic Acids Res. 2024-1-5
Nucleic Acids Res. 2022-1-7
Brief Bioinform. 2022-1-17
IEEE/ACM Trans Comput Biol Bioinform. 2022
Nat Biotechnol. 2020-6
Bioinformatics. 2020-8-15
IEEE/ACM Trans Comput Biol Bioinform. 2021