IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2535-2545. doi: 10.1109/TCBB.2020.2975780. Epub 2021 Dec 8.
Small molecule(SM) drugs can affect the expression of miRNAs, which plays crucial roles in many important biological processes. The chemical structure and clinical information of small molecule can simultaneously incorporate information such as anatomical distribution, therapeutic effects and structural characteristics. It is necessary to develop a novel model that incorporates small molecule chemical structure and clinical information to reveal the unknown small molecule-miRNA associations. In this study, we developed a new framework based on non-negative matrix factorization, called SMANMF, to discover the potential small molecules-miRNAs associations. First, the functional similarity of two miRNAs can be obtained by computing the overlap of the target gene sets in which the miRNAs interact together, and we integrated two types of small molecule similarities, including chemical similarity and clinical similarity. Then, we utilized a non-negative matrix factorization model to discover the unknown relationship between small molecules and miRNAs. The evaluation results indicate that our model can achieve superior prediction performance compared with previous approaches in 5-fold cross-validation. At the same time, the results of case studies also reveal that the SMANMF model has good predictive performance for predicting the potential association between small molecules and miRNAs.
小分子(SM)药物可以影响 miRNA 的表达,miRNA 在许多重要的生物学过程中起着关键作用。小分子的化学结构和临床信息可以同时整合解剖分布、治疗效果和结构特征等信息。因此,有必要开发一种新的模型,将小分子的化学结构和临床信息结合起来,以揭示未知的小分子-miRNA 关联。在这项研究中,我们开发了一种基于非负矩阵分解的新框架,称为 SMANMF,用于发现潜在的小分子-miRNA 关联。首先,通过计算 miRNA 相互作用的靶基因集的重叠,可以获得两个 miRNA 的功能相似性,我们整合了两种类型的小分子相似性,包括化学相似性和临床相似性。然后,我们利用非负矩阵分解模型发现小分子和 miRNA 之间未知的关系。评估结果表明,与以前的方法相比,我们的模型在 5 折交叉验证中可以实现优越的预测性能。同时,案例研究的结果也表明,SMANMF 模型对预测小分子和 miRNA 之间潜在关联具有良好的预测性能。