Galazzo Laura, Maste Stefan, Sharma Bikramjit, Tran Van Anh, Pongratz Tim, Teucher Markus, Marx Dominik, Neese Frank, Kast Stefan M, Bordignon Enrica
Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.
Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany.
J Phys Chem Lett. 2025 Aug 14;16(32):8141-8149. doi: 10.1021/acs.jpclett.5c01053. Epub 2025 Aug 1.
Protonatable nitroxides are electron paramagnetic resonance (EPR) molecular probes employed for pH measurements in bulk aqueous media. The change in the protonation state of the molecule induces a measurable change in the - and hyperfine () parameters used as pH indicators. The quantitative understanding of the origin of the change of the EPR parameters in terms of electronic structure and different solvation patterns is still lacking. Here, we delve into the origins of the changes in the - and hyperfine () parameters of N upon protonation of the heterocyclic nitrogen of the pH-sensitive nitroxide probe HMI (2,2,3,4,5,5-hexamethylimidazolidin-1-oxyl, CHNO) by means of combined experimental and theoretical techniques that have been developed and extensively validated in previous works. To establish a molecular-level understanding of the dependency of EPR parameters on the pH of the medium, we considered two limiting cases of deprotonated (pH ≫ p) and protonated (pH ≪ p) states of HMI. We found that, upon protonation of the heterocyclic nitrogen, the change in the electronic structure dominates the pH dependency of isotropic and values. Supporting this prominent role of electronic structure modulation, the average shift of EPR observables between the corresponding hydrogen-bonding states of the protonated and unprotonated forms remains constant. Furthermore, the results establish that the hydrogen bonding network structures around the nucleus of interest only marginally change upon protonation, although the populations of corresponding states with given H-bond numbers strongly do. This feature entails an additional, smaller contribution to the relative pH dependency of and values over electronic structure modulation upon protonation in a given H-bond state. The findings of this study pave the way to investigating HMI-based labels in peptides and other pH-sensitive EPR probes in protic polar solvents.
可质子化的氮氧化物是用于在大量水性介质中进行pH测量的电子顺磁共振(EPR)分子探针。分子质子化状态的变化会导致用作pH指示剂的g和超精细(A)参数发生可测量的变化。目前仍缺乏从电子结构和不同溶剂化模式方面对EPR参数变化起源的定量理解。在此,我们借助在先前工作中已开发并广泛验证的实验和理论相结合的技术,深入研究pH敏感型氮氧化物探针HMI(2,2,3,4,5,5-六甲基咪唑啉-1-氧基,C₆H₁₅NO)的杂环氮质子化时N的g和超精细(A)参数变化的起源。为了在分子水平上理解EPR参数对介质pH的依赖性,我们考虑了HMI去质子化(pH≫pKa)和质子化(pH≪pKa)状态的两种极限情况。我们发现,杂环氮质子化时,电子结构的变化主导了各向同性g和A值对pH的依赖性。质子化和未质子化形式相应氢键状态之间EPR可观测量的平均位移保持恒定,这支持了电子结构调制的这一突出作用。此外,结果表明,尽管具有给定氢键数的相应状态的数量有很大变化,但在感兴趣原子核周围的氢键网络结构在质子化时仅略有变化。这一特征对给定氢键状态下质子化时g和A值相对于电子结构调制的相对pH依赖性有额外的、较小的贡献。本研究的结果为研究质子性极性溶剂中基于HMI的肽类标记物和其他pH敏感型EPR探针铺平了道路。