Zhu Huquan, Rahman Shafiq Ur, Pan Ting, Yuan Jiasheng, Zhou Xin
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
Biosens Bioelectron. 2025 Nov 15;288:117830. doi: 10.1016/j.bios.2025.117830. Epub 2025 Jul 28.
Vibrio parahaemolyticus, a significant seafood-borne pathogen, necessitates rapid and precise detection to guarantee food safety. Herein, we developed a visualization assay method by engineering T4 bacteriophage (T4) to display approximately 870 tail spike proteins (TSPs) derived from a lytic bacteriophage specific to target bacteria, along with about 30 gold nanoparticles (GNPs) of 5 nm at distinct capsid domains. Specifically, we fused the small outer capsid protein (Soc) of T4 with a TSP to obtain a fusion protein Soc-VP-TSP. In parallel, we fused the highly antigenic outer capsid protein (Hoc) with a biotin acceptor peptide (Avi-tag), generating the fusion protein Avi-Hoc. These two fusion proteins were co-assembled onto a T4ΔHS bacteriophage (T4ΔHS) capsid deficient in both native Hoc and Soc proteins, yielding a dual-functionalized phage (T4@TSPs@Avi) that simultaneously displays TSPs and Avi-tags. After covalent biotinylation via BirA biotin-protein ligase, the phages were conjugated to streptavidin-coated GNPs, forming a final detection probe termed T4@TSPs@GNPs. This dual-display T4 allows targeting bacteria to appear as visual golden rod-shaped structures under dark-field microscopy. To enable intelligent and efficient detection, we employed a DenseNet169 model combining saliency-guided region-of-interest extraction, multi-scale feature fusion, and Grad-CAM to accurately distinguish target bacteria from background noise. The entire detection process can be completed within 30 min, achieving a detection limit of 4 CFU/μL and an accuracy that is completely consistent with the gold standard. This integrated strategy provides a powerful and adaptable tool for intelligent pathogen detection in food safety, clinical diagnostics, and environmental monitoring.
副溶血性弧菌是一种重要的食源性病原体,需要快速准确的检测以确保食品安全。在此,我们通过改造T4噬菌体(T4)开发了一种可视化检测方法,使约870个源自靶细菌特异性裂解噬菌体的尾刺蛋白(TSP)以及约30个5纳米的金纳米颗粒(GNP)展示在不同的衣壳结构域。具体而言,我们将T4的小外衣壳蛋白(Soc)与一个TSP融合,得到融合蛋白Soc-VP-TSP。同时,我们将高抗原性的外衣壳蛋白(Hoc)与生物素受体肽(Avi标签)融合,产生融合蛋白Avi-Hoc。这两种融合蛋白共同组装到天然Hoc和Soc蛋白均缺失的T4ΔHS噬菌体(T4ΔHS)衣壳上,产生一种同时展示TSP和Avi标签的双功能噬菌体(T4@TSPs@Avi)。通过BirA生物素-蛋白连接酶进行共价生物素化后,噬菌体与链霉亲和素包被的GNP结合,形成最终的检测探针T4@TSPs@GNPs。这种双展示T4使靶细菌在暗场显微镜下呈现为可见的金色棒状结构。为实现智能高效检测,我们采用了一种DenseNet169模型,结合显著性引导的感兴趣区域提取、多尺度特征融合和Grad-CAM,以准确区分靶细菌与背景噪声。整个检测过程可在30分钟内完成,检测限达到4 CFU/μL,准确率与金标准完全一致。这种集成策略为食品安全、临床诊断和环境监测中的智能病原体检测提供了一种强大且适应性强的工具。