Suppr超能文献

基于膜的反应器中甲烷氧化细菌的聚羟基丁酸酯(PHB)生产及甲烷吸收

Polyhydroxybutyrate (PHB) production and methane uptake by methanotrophic bacteria in a membrane-based reactor.

作者信息

Taskan Banu, Taskan Ergin, Lai YenJung Sean, Eustance Everett, Mahmood Maheen, Luo Yi-Hao, Rittmann Bruce E

机构信息

Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, 85287-5701, AZ, USA; Department of Environmental Engineering, Faculty of Engineering, Firat University, 23119, Elazig, Turkey.

Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, 85287-5701, AZ, USA.

出版信息

Chemosphere. 2025 Sep;385:144590. doi: 10.1016/j.chemosphere.2025.144590. Epub 2025 Aug 1.

Abstract

Methanotrophic bacteria use methane (CH) as an electron donor and carbon source for growth and to produce a variety of valuable byproducts, including polyhydroxybutyrate (PHB), a feedstock for bioplastics. This study evaluated the effects of three independent parameters (nitrogen source, dissolved oxygen (DO) concentration, and CH availability) on biomass and PHB yield. The work employed a membrane-based approach to deliver CH and O gases independently for methanotrophic growth, a process referred to as Membrane Oxygenation and Methanotrophy (MOM). Performance metrics included bacterial yield, CH consumption rate, PHB content, and microbial community composition. Ammonium (NH) as an N-source with low DO concentration led to the highest biomass yield (up to 0.59 g produced biomass/g CH) and PHB content (up to of 36% of dry weight). The MOM improved CH utilization efficiency up to 95.8% without gas circulation. Limiting CH availability during N-depletion promoted the PHB content of the methanotrophic bacteria. However, excess CH in the headspace (>70% CH not being utilized) for the limited DO condition inhibited biomass growth and PHB production. Shallow metagenomic analysis showed that the bacterial species in the MOM reactors mainly belonged to the genera Methylocytis (up to 87% relative abundance) and Hyphomicrobium (up to 70% relative abundance). Methylocystis, a Type II methanotroph known to produce PHB, became dominant during the conditions that led to the highest PHB content. The findings demonstrate the MOM operated with lower CH gas pressure and limited DO promoted CH utilization and conversion toward PHB production.

摘要

甲烷营养菌利用甲烷(CH₄)作为电子供体和碳源进行生长,并产生各种有价值的副产物,包括聚羟基丁酸酯(PHB),一种生物塑料的原料。本研究评估了三个独立参数(氮源、溶解氧(DO)浓度和CH₄可用性)对生物量和PHB产量的影响。这项工作采用了一种基于膜的方法,独立输送CH₄和O₂气体以促进甲烷营养菌的生长,这一过程称为膜氧合和甲烷营养作用(MOM)。性能指标包括细菌产量、CH₄消耗率、PHB含量和微生物群落组成。以铵(NH₄⁺)作为氮源且DO浓度较低时,生物量产量最高(每克CH₄产生高达0.59克生物量),PHB含量最高(高达干重的36%)。MOM在不进行气体循环的情况下将CH₄利用效率提高到了95.8%。在氮耗尽期间限制CH₄可用性可提高甲烷营养菌的PHB含量。然而,在有限DO条件下,顶空中过量的CH₄(>70%未被利用)会抑制生物量生长和PHB生产。浅层宏基因组分析表明,MOM反应器中的细菌种类主要属于甲基胞菌属(相对丰度高达87%)和生丝微菌属(相对丰度高达70%)。甲基孢囊菌是一种已知能产生PHB的II型甲烷营养菌,在导致PHB含量最高的条件下占主导地位。研究结果表明,在较低的CH₄气压和有限的DO条件下运行的MOM促进了CH₄的利用和向PHB生产的转化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验